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Quasiperiodic Events in an Earthquake Model
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We introduce a modification of the Olami-Feder-Christensen earthquake model [Phys. Rev. Lett. 68,
1244 (1992)] in order to improve the resemblence with the Burridge-Knopoff mechanical model and with
possible laboratory experiments. A constant and finite force continually drives the system, resulting in
instantaneous relaxations. Dynamical disorder is added to the thresholds following a narrow distribution.
We find quasiperiodic behavior in the avalanche time series with a period proportional to the degree of
dissipation of the system. Periodicity is not as robust as criticality when the threshold force distribution
widens, or when an increasing noise is introduced in the values of the dissipation.
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The concept of self-organized criticality (SOC) [1], in-
troduced by Bak, Tang and Wiesenfeld in 1987, was an
attempt to explain the appearance of scale invariance in
nature. In their sandpile model both the random, slow
addition of “blocks” on a two dimensional lattice and a
simple, local, and conservative rule drive the system into a
critical state where power law distributed avalanches main-
tain a steady regime far from equilibrium. There is no
correlation between the avalanches, and eventually they
reach the boundaries of the lattice liberating the excess of
energy. Five years later Olami, Feder, and Christensen
(OFC) made an important contribution to the SOC ideas
by mapping the Burridge-Knopoff spring-block model [2]
into a nonconservative cellular automata [3], simulating
the earthquake’s behavior and introducing dissipation in
the family of SOC systems. The fact that avalanches are
uncorrelated in the sandpile model has been used as an
argument to propose that it is not possible to predict real
earthquakes [4]. However, foreshocks, aftershocks, and
clustering properties [5] indicate the existence of correla-
tion between different events. Many seismologists believe
that large earthquakes are quasiperiodic [6,7], but periodic
behavior has appeared in theoretical models only as a
special or as a trivial solution [8—10], or as a result of a
phase locking due to periodic boundary conditions (BCs)
[11-13], or synchronized regions [14] in cellular automata.

The spring-block model consists in a two dimensional
array of blocks on a flat surface. Each block is connected
with its four nearest neighbors, and in the vertical direc-
tion, to a driving plate which moves horizontally at veloc-
ity v. The connections are made by springs, and when the
force acting on a block overcomes the static friction with
the surface, the block slips. Then a redistribution of forces
takes place in the neighbors that eventually trigger new
displacements. In the OFC model the force on a block is
stored in a site of a squared lattice, and the static friction
threshold has the same value for all blocks. Starting from a
random distribution of forces, the site closest to the thresh-
old is found and the exact force necessary to provoke a slip
in this block is added to every site of the grid. This
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infinitely accurate tuning is only possible in the mechanical
model if the displacement of the plate is infinitely slow
(v — 0), considering the fact that the real time resolution is
finite. When a site reaches the threshold it is set to zero, and
a fraction « of its force is redistributed to its neighbors. If
a = 1/4 the system is conservative. If one of the neighbors
reaches the threshold the process is repeated until all the
sites have their values below the threshold. The number of
slips is defined as the avalanche size. Then again, the site
closest to the threshold is found and a new avalanche is
triggered. The avalanche distributions follow power laws
and by varying the degree of dissipation «, the slope of the
distribution can be tuned. Although the criticality of the
system in the nonconservative regime (a < 1/4) has been
widely debated [15,16], the model results in a power law
distribution of avalanches (for « ~ 0.2) similar to the
Gutenberg-Richter law [17] and also reproduces other
characteristics of real earthquakes [18,19].

In the aim of improving resemblance with the mechani-
cal model we have introduced two variations in the OFC
model. (i) Thresholds are distributed randomly following a
Gaussian distribution of standard deviation o. When a
block slips a new threshold is imposed to its site. This is
closer to the actual block-surface friction problem and
allows the system to start from a configuration of zero
force in every block [20]. (ii) Instead of assuming infinitely
accurate tuning, we add a quantum of force in each step, as
in Ref. [21], but keeping the separation of time scales
(relaxations are considered instantaneous) which is more
realistic [22]. In the mechanical model this is equivalent to
a finite velocity (considering finite time resolution). The
dynamics becomes more complex because several sites can
reach the threshold as the plate moves, so several clusters
start to grow and eventually they can touch each other
merging into a single one. The avalanche size is defined
as the number of slips in each cluster.

In order to study the temporal series of avalanches we
need to define a unit of time. Let us consider the case a =
0, o = 0 (isolated blocks with single threshold). When the
force that drives the system reach a value F,, equal to the
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threshold, every site returns to its original value and a
trivial periodicity rules the dynamics; this period is a
natural unit. Therefore our unit of time is the real time
T,, that a mechanical model spends to add a force F, to the
system.

We performed simulations taking a quantum of force
8F = 10~* and threshold values around 1 for different o
values: 0, 0.001, and 0.01. Then an isolated block would
need 10* steps to reach the threshold, so it would spend a
time 6¢/T,, = 10~* in each step. All the simulations pre-
sented in this Letter took place with open BCs, but the
same results were obtained in a system with free BCs as
defined in Ref. [3].

Figure 1 shows the avalanche size distribution for differ-
ent sizes of the lattice (more than 3 X 108 clusters for L =
512) in a system, with @ = 0.2 and o = 0.001. Avalanche
size is defined as the number of slips in each cluster. The
distributions follow a power law with a slope equal to
—1.91. The curves present cutoffs sensitive to the size of
the system but they collapse (see inset) when the finite size
scaling relation P(s, L)LP = f(sL™") is applied with 8 =
4.2 and v = 2.2. Simulations for other « values with L =
512 indicate that the absolute value of the slope of the
distributions increases as the dissipation decreases. Both
the fact that v is larger than 2 and the lack of universality
are still in controversy [23,24]. The power law behavior of
the avalanche distributions for small « values is more
robust in this finite velocity model than in the original
OFC one due to the fact that larger clusters have less
probability in the OFC model. This is very consistent
with Drossel [14] if we consider our ‘“‘floating-point pre-
cision” equal to the step in which the driven force is
increased. The avalanche size distributions (at least for
a >0.1) do not suffer considerable variations when o
moves from 0 to 0.01. For o = 0.1 the system is not critical
anymore, but this is not a realistic value for the fluctuations

10° 10' 10? 10° 10* 10°
3 ' 10"
1074 o
] T, 10"
o
10°4 P, :
4 10
~10°1
s 4 107
&, 7] —>—L=16
10 <4 L=32 10"
o o—L=64
107y —v—L=128 .
4 —2o—L=256 10
10" —o—L=512
3 T
10° 10
FIG. 1. Avalanche size distributions for the number of slips in

each cluster, with & = 0.2 and ¢ = 0.001. The slope is —1.91.
Inset: collapse of all the curves under the scaling relation
P(s, L)L? = f(sL™"), with 8 = 4.2 and v = 2.2.

of the friction force associated with an interface between a
block and a flat surface.
The analysis of the autocorrelation function

> (s(7)s(1 + 1) — (s(n))?
> (s(7) = (s(n)))?

where s(#) corresponds to the avalanche time series (Figs. 2
and 3) displays a strong correlation between avalanches.
Some of the peaks for o = 0.001 are shown in Fig. 2. The
position and height of all the peaks for different o appear
in Fig. 3. The position of the peaks indicates that for
every analyzed o the system has a quasiperiodic behavior
with a period proportional to the degree of dissipation:
T=T,10-4a).

In general, the height of the peaks decreases as the
dissipation decreases; and for @ = 0.225 the only system
where a sign of periodicity can be identified is for o =
0.001. Nevertheless, the peak is just slightly above the
background noise (see Fig. 2). For the conservative case,
as in the ‘“‘sandpile’” model, avalanches are uncorrelated.
Periodicity in the system is not as robust as criticality when
o varies: peaks are almost delta functions for o = 0 (see
curve in gray in Fig. 2) but their width increases dramati-
cally when o increases. The height of the peaks shows a
monotonous variation with a for o = 0, but for larger o
there are local variations not well understood yet. Although
the curves for smaller o values cross each other, the peaks
for larger o are extremely wide, noisy, and have a very
small height, indicating that periodicity vanishes when
noise is added to the system.

We have characterized the avalanches in our model into
small, medium or large in the following way: In the ava-
lanche size distribution, in a log-log plot, we take the linear
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FIG. 2. Autocorrelation function for the avalanche time series
[Eq. (1)] for a system with o = 0.001 and L = 128. Notice in
gray the same function for a system with L = 128, a = 0.125,
but with o = 0.
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FIG. 3. Position of the peaks for the correlation function of the
avalanche time series [Eq. (1)] for different o. They follow the
equation T = Tm(1 — 4a). Inset: Height of the peaks.

zone; in the case of L = 128 it spans from 1 to 6 X 103 (see
Fig. 1). Then this interval is divided in three zones loga-
rithmically equispaced. As a result, avalanches smaller
than 18 are considered small, those lying between 19 and
330 are medium, and those greater than 330 are large. The
average number of avalanches larger than zero around a
large one (normalized to the total number of large ava-
lanches) for a system with L = 128 is displayed in Fig. 4. It
is clear that large avalanches (the important target con-
cerning prediction) are clustered in time following a qua-
siperiodic regime depending of a. This kind of periodicity
have been observed previously [11-14] but mainly peri-
odic BCs are used. It appears as a consequence of a phase
locking with single avalanches, and the introduction of
open BCs should affect it; nevertheless we are observing
both criticality and periodicity coexisting together.
Figure 5 shows that (a) indeed there is a lot of activity at
the lattice’s border with many small avalanches at the
center, but when we consider the size of the events
(b) the distribution becomes flat in the inner part with
(c) avalanches that in average grow in the direction of
the center of the lattice; (d) 18.6% of the large avalanches
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FIG. 4. Average number of avalanches in the vicinity of a large
avalanche, normalized to the total number of large avalanches, in
a system with L = 128, 0 = 0, and « = 0.2. Inset: in a system
with L = 128, o = 0, and « = 0.25 (conservative case).

have trigger points in the four columns (rows) closest to the
border, but beyond 10 columns (rows) away from the
border the distribution is flat and 73% of the large ava-
lanches have their trigger points there. This indicates that
periodicity is not a result of a phase-locked solution with
trivial (size one) avalanches in areas at the inner part of the
system that are eventually destroyed (and created) due to
large events triggered at the borders of the lattice [14], but
can appear in a more complex scenario.

In order to construct an avalanche time series for the
OFC model we need to define a scale 6¢ to measure the
time. In the finite velocity model it is natural to choose
8t/T,, = S6F; we will use the same value for the OFC one
(the qualitative result is independent of &¢). If more than
one event took place in the same of, the value of the
avalanche size in this interval is equal to the sum of the
avalanche size in all those events. The power spectrum for
the avalanche time series for the OFC model with L = 128
and o = 0.15 appears in Fig. 6. It displays a sharp peak at a
frequency equal to 2.5 corresponding to a period equal to
0.4. The power spectrum for a finite velocity model with
the same L, , and o = 0 shows no qualitative differences
with the OFC one, but the intensity of the peaks are larger.
This shows that periodicity is not confined to this particular
finite velocity model but it is a general characteristic of the
OFC one. Nevertheless, in this case, as v — 0, the unit of
time 7,, — oo. The correlation function method did not
bring satisfactory results due to poor statistics for small
values of « (the peaks appear for the respective periods, but
the background noise shows large fluctuations for small «
values).

Because of the relation between dissipation and period-
icity in the model we performed a few simulations where
the value of « is not constant but randomly distributed

0

FIG. 5. Spatial distribution (in log scale) of (a) Trigger
points of the clusters, (b) Trigger points X avalanche size,
(c) Centers of mass of the clusters X avalanche size, (d) Trig-
ger points of the clusters but only for large avalanches; in a
system with L = 512, « = 0.2, and o = 0.001.
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FIG. 6. Power spectrum for the avalanche time series for the
OFC model (left) and for our model (right). Both with L = 128,
a =0.15, and o = 0.

following a Gaussian centered in «, with standard devia-
tions o, equal to 0.005, 0.01, and 0.02. When a block slips
« is changed. This dynamical disorder in « is less realistic
than the quenched one [25], but the qualitative result when
it is increased is the same: the rupture of the criticality. For
a = 0.2 and the o, values being 0.005 and 0.01, the height
of the peak in the correlation function decreases more than
90% and the period widens up to 5%. The avalanche size
distributions do not suffer considerable variations. Similar
results were obtained for a = 0.15. For o, = 0.02 criti-
cality disappears for both values of «. This corroborates
that periodicity is more fragile than criticality when noise
is added to the system.

Quasiperiodic signals in earthquake time series have
been used in an attempt to predict the next main shock,
but generally with unsuccessful results [6,7]. This situ-
ation, in combination with poor statistics and the lack of
a theory that explains periodicity, has created doubts about
the real existence of those series of quasiperiodic events
[26]. Gao et al. [27] found an annual periodicity following
the 1992 Landers earthquake in California, but they sug-
gest seasonal differences in water extraction rates, rainfall
and barometric pressure as the cause of it. Considering the
periodicity found in this simple mapping of the block-
spring model into a nonconservative cellular automata,
we can speculate that the earthquake’s natural behavior is
a quasiperiodic state and that the variations or absence of
periodicity is due to changes in the dissipative regime and/
or in the relative velocity of the plates and/or in the amount
of energy that can be stored in a given zone between two
tectonic plates (related to our threshold that rules the unit
of time).

In conclusion, we have introduced two variations in the
OFC model improving resemblance with the spring-block
one, and bridging the gap between the model and possible
experiments. We found a nontrivial quasiperiodic behavior
in the system with a period proportional to the degree of
dissipation. For small variations in the thresholds or in the
degree of dissipation, periodicity tends to vanish, while the

system remains showing avalanche size distributions that
follow power laws.
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