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Nonequilibrium Ribbon Model of Twisted Scroll Waves
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We formulate a reduced model to analyze the motion of the core of a twisted scroll wave. The model is
first shown to provide a simple description of the onset and nonlinear evolution of the helical state
appearing in the sproing bifurcation of scroll waves. It then serves to examine the experimentally studied
case of a medium with spatially varying excitability. The model shows the role of sproing in this more
complex setting and highlights the differences between the convective and absolute sproing instabilities.
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Scroll waves, spirals tridimensional (3D) counterparts,
are essential structuring elements of the dynamics of thick
excitable media and are thought to play an important role
in ventricular fibrillation [1,2]. This has motivated detailed
examinations of their instabilities, both with chemical re-
actions in gels [3,4] and theoretically [5–10]. Henze et al.
discovered that twist can destabilize a scroll straight core
and lead it to adopt a helical shape [5]. This ‘‘sproing’’
bifurcation resembles the twist-induced instabilities of
elastic rods [11,12] or of DNA [13] but has remained
somewhat of a puzzle since, using long-wave expansions
[6], the dynamics of a scroll core filament was found to be
independent of twist [7]. Here insights gained from a
numerical stability analysis [8] lead us to formulate a
simple model of the core dynamics of a twisted scroll
wave that is analytically tractable and agrees semiquanti-
tatively with the results of reaction-diffusion (RD) simula-
tions. We first show that the model provides an easy
understanding as well as an accurate description of spro-
ing. Systematic variations of electrophysiological proper-
ties are known to exist in the heart, and gradients of
excitability have been shown to promote scroll wave in-
stabilities in chemical media [3,4]. Therefore, we then
choose the case of a medium with spatially varying excit-
ability to test the usefulness of the approach beyond the
simplest case of a homogeneous medium. The results show
that the observed instabilities [3,4] are tightly linked to
sproing and illustrate the subtleties brought by the problem
nonequilibrium setting.

The center of rotation of a planar spiral becomes for a
three-dimensional scroll wave the line of instantaneous
center of rotations R��; t�, where � parametrizes this
center filament and t is time. We choose to describe the
scroll wave core as the ribbon �R��; t�;p��; t��, where the
unit vectors p��; t� point orthogonally from the center
filament to the line of instantaneous scroll wave tips. The
local rotation of the line of instantaneous tips around the
center filament defines the scroll wave twist �w,

�w � �p� @sp� � T; (1)

where T � @R=@s is the local tangent to the center fila-
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ment and s its arclength (with @s simply a notation for
1=j@R=@�j@�). Starting from a straight, untwisted scroll
wave, a gradient expansion [6–8,14] based on the transla-
tional and rotational invariance neutral modes shows that,
at lowest order, the scroll core motion is simply driven by
its center filament curvature � [6–8]

R t �N � a1�; Rt �B � a2�; (2)

where N is the filament normal �N � @T=@s and B �
T�N its binormal. The case when a1 < 0 is analogous to
the filament having a negative line tension, and the allied
instability has been extensively studied [7–10]. However,
Eq. (2) leaves twist-induced instabilities unexplained,
since the motion of the mean filament is not influenced
by the ribbon twist [7]. Twist appears at higher orders in the
gradient expansion of Refs. [6–8] but, besides being some-
what cumbersome, this rigorous approach suffers from the
fundamental difficulty that sproing sets in at a finite wave
number [8]. Consequently, it cannot be precisely described
by a gradient expansion cut to any finite order [15].
Therefore, we find it instructive to formulate here a simple
phenomenological model that captures the essence of the
phenomenon and that contains only terms essential for the
instability description. The filament velocity in its normal
plane is written as a generalization of Eq. (2)

�Rt�?�a1Rss�a2Rs�Rss�d1�wRs�Rsss

	d2�w�Rsss�?	b1�w�Rssss�?	b2Rs�Rssss;

(3)

where the brackets denotes the component of the enclosed
vector orthogonal to the filament tangent [e.g., �Rt�? 

Rt 	 �Rt � T�T]. It is worth remarking that the helical
instability of an elastic ribbon with a gradient dynamics
based on extension and curvature and twist energies [12]
essentially depends on the a1, b1, and d1 terms. The a2, b2,
and d2 terms describe motion in the orthogonal direction.
They can appear in the present nonpotential problem due to
the handedness of the spiral rotation, and their sign de-
pends on the spiral sense of rotation. Equation (3) needs to
1-1 © 2006 The American Physical Society
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FIG. 1. (a) Dispersion relations obtained from a direct linear
stability analysis of a twisted scroll wave of Eq. (8) [8], with
� � 0:8, � � 0:025, and � � 0:01, and (b) from Eq. (9), with
a � 0:2� 0:2i, d � 3:5� i, and b � 2� i, chosen to give a
semiquantitative overall agreement between the two sets of
curves. Above a critical twist, Re��� is positive for k around a
nonzero kc, and the straight scroll becomes unstable to a finite
wave number Hopf instability. Since the instability occurs at
finite wavelength, a better fit at k � 0 (using the exact value of a
[8]) typically deteriorates the overall fit.
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be completed by the evolution of the ribbon twist. The
twist kinematics can be adapted from previous investiga-
tions of elastic ribbons. Following Ref. [16], we note that,
as one slides along the central filament at a fixed time t, the
ribbon vector p rotates and remains orthogonal to the
filament tangent T,

@p
@�
� �w

@s
@�
�T� p� 	

�
@T
@�
� p
�
T: (4)

This is also true as time evolves when one stands at a fixed
abscissa � and, similarly,

@p
@t
� !�T� p� 	

�
@T
@t
� p
�
T; (5)

where ! is the local instantaneous scroll wave rotation
frequency. Comparing crossed derivatives of Eqs. (4) and
(5) gives as a single compatibility condition the equality of
the projections of @t;�p and @�;tp on T� p,

@
@t

�
�w
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@�

�
�
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@�
�

�
@T
@�
�
@T
@t

�
� T: (6)

The kinematic equation (6) is a local description for an
extensible ribbon of the well-known conversion of twist
into writhe [17] associated to linking number conservation
at a global level. The specific dynamics of the present
problem is encoded in the twist-dependent rotation fre-
quency !. A good approximation for moderate twist is
obtained by keeping the first twist corrections to the un-
twisted scroll frequency !0,

! � !0 � c�2
w �D@s�w � �T � @tR��w; (7)

where the coefficients D and c can be explicitly calculated
by linearization around the straight scroll wave and pro-
jection over the adjoint eigenmodes [8]. The last term in
Eq. (7) is due to the apparent rotation of p coming from
changing position along the filament. Equation (6) with (7)
is equivalent to Keener’s phase equation [6] and completes
our formulation of the ribbon model. In the following, this
simplified model is compared to simulations of RD equa-
tions in the form [18]

@tu � r2u� u�1	 u��u	 �v� ��=��=�;

@tv � u	 v;
(8)

with � � 0:8, � � 0:025, and different values of �.
Equations (8) are simulated with an explicit second-order
scheme, with dx � 0:15, and dt � 5:625� 10	3.

Sproing.—Taking a vertical filament along the z axis
and assuming small transverse X; Y deformations, Eqs. (3),
(6), and (7) become to quadratic order

@tW � a@2
zW � id�w@3

zW 	 b@4
zW; (9)

@t�w � @s�D@s�w� � @s�c�2
w� � @s!0

� Ref�@z��w@z �W� 	 i�@2
z

�W�@z�@tWg; (10)

where a complex notation has been used for the deforma-
tion field W�z; t� � X�z; t� � iY�z; t�, and the constants
09830
a; b; d (e.g., a � a1 � ia2), and @s can be approximated
by �1	 j@zWj2=2�@z. For a uniformly twisted filament in a
homogeneous medium (!0 � cst), the linear modes
W�z; t� � eikz��t, correspond to helices of pitch k. Their
dispersion relation is obtained from Eq. (9) as

� � 	ak2 � d�wk
3 	 bk4: (11)

With appropriate constants a; b; d, it is similar to the
dispersion relation obtained from RD equation (8)
[Figs. 1(a) and 1(b)]. A secondary local maximum appears
away from k � 0 when �w � 4=3

��������������������
2a1b1=d

2
1

q
. In a large

box, instability sets in at the critical twist �cw �

2
�����������������
a1b1=d

2
1

q
, with the pitch of the allied helix equal to kc ��������������

a1=b1

p
. The mode k becomes unstable above �cw;k when

Re���k��> 0. For a homogeneous twist �w slightly above
�cw;k, the radius R�t� of a helix of pitch k grows as

Rt � �k��w 	 �
c
w;k�R; (12)

where �k � Re�@��k�=@�w� � d1k
3. Saturation of the in-

stability comes from the coupling between twist and bend-
ing described by Eq. (10). For an helical mode of pitch k
and time dependent but homogeneous twist and radius, the
partial s derivative terms of Eq. (10) vanish. The last and
only remaining term is equal to 	k2��w � k�RRt, so inte-
gration of Eq. (10) shows that the twist �w decreases with
the helix radius,

�w � �0
w 	 ��0

w � k�k2R2=2; (13)

where �0
w is the initial twist of the straight scroll, and we

have assumed �Rk�2 � 1 [19]. Comparison of Eqs. (12)
and (13) describes sproing as a supercritical bifurcation

Rt � �k��0
w 	 �cw;k�R	

�k
2
��0
w � k�k2R3: (14)

The deformation of the center filament decreases the initial
twist until the critical value �w � �cw;k is reached, at which
point the driving force for the instability disappears. The
final helix radius is R � �2��0

w 	 �cw;k�=��
0
w � k�k2�1=2

(with k � kc in a large box).
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These analytic results compare well to results of RD
simulations with periodic boundary conditions (BC) in the
z direction to enforce linking number conservation [20]. As
previously reported [8], sproing is found to be a supercriti-
cal bifurcation, and the twist of a bifurcated helix is very
close to the critical one, in good agreement with the above
findings. In large systems, as for oscillatory media [21], the
helices resulting from sproing may be unstable to second-
ary Hopf instabilities [8], which appear sensitive to higher
order nonlinearities not included in Eq. (3). These can be
described by amplitude equations for the coupled helix
amplitude and excess local linking number. The equations
can be derived from the reduced model or directly from the
RD equation (8) and take a form similar to other cases with
a conservation law [22]. In simulations of Eq. (8), these
secondary instabilities typically result in other helices with
smaller wave number or in modulated structures.

Inhomogeneous twist.—Most experimental situations
correspond to imposing free nonflux BC on Eq. (8) rather
than periodic ones. These do not conserve total linking
number, and an initially twisted scroll wave untwists [3] in
a homogeneous medium. Spatial variations of excitability
do, however, promote twist formation. Figure 2 shows RD
simulations for a straight vertical filament, with nonflux
BC, and either a jump [Fig. 2(a)] or a linear gradient
[Fig. 2(b)] of the value of� in the z direction. For moderate
variations of �, the initial untwisted core remains straight
but evolves toward a final twisted and steadily rotating
configuration. The different natural spiral rotation frequen-
cies !0�z� create phase differences between different
heights z, which, together with the rotation frequency
increase with twist [Eq. (7)], lead to a steady state. The
resulting distribution of twist can be computed, either
analytically or numerically, from the model equation (10)
using the appropriate source term @z!0. The calculated
distribution of twist agrees remarkably well with the RD
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FIG. 2. Distributions of twist along a straight filament in
simulations of RD equation (8) (solid line) and given by
Eq. (10) (dashed line). (a) Jump of excitability obtained by
taking ��z� � �b � ��t 	 �b���z	 L=2� in Eq. (8) or in the
model by taking the allied spiral frequency jump !0 � !b �
�!t 	!b���z	 L=2�. (b) Linear gradient of excitability:
��z� � �b � ��t 	 �b�z=L in Eq. (8) or !0 � !b � �!t 	
!b�z=L for the model. The parameters are the same as in
Fig. 1, with �b � 0:01, �t � 0:03, !b � 1:80, !t � 1:696,
and coefficients D � 0:578, c � 0:720, at the bottom, and D �
0:614, and c � 0:856, at the top, with equivalent expressions.
This gives a theoretical prediction of �max

w ’ ��!0=c�
1=2 � 0:35

in (a). Here and in the following, we plot twist in absolute values.
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simulations as shown in Fig. 2. For definiteness, we focus
on the case of a medium with an excitability jump. In the
RD equation (8), we fix �b � 0:01 in the medium bottom
half and take � � �t > �b in the less excitable top half.
When the jump in excitability is larger than a critical value,
the straight scroll becomes unstable, very similarly to what
is observed in experiments [3,4,23]. The instability is
slightly subcritical and the resulting structures modulated
helices (Fig. 3). To clearly relate this instability to sproing,
we consider now the limit of large systems. Then, for a
moderate jump of excitability, the scroll core is straight and
its frequency is basically set by the domain most excitable
half where the scroll twist is negligible. The scroll twist
�max in the domain less excitable half is almost constant
and simply determined by the frequency jump �!0 be-
tween the two domain parts, �max

w ’ ��!0=c�1=2. When
�max
w reaches the sproing threshold, for a large enough

jump, one could expect sproing to set in with the center
filament taking the shape of a helix of constant radius in the
low excitability region and radius decreasing to zero in the
higher excitability part. However, the instability onset
differs from the sproing threshold in a homogeneous sys-
tem, even when L! 1 [Fig. 4(a)]. Furthermore, the bi-
furcated filament radius decreases exponentially also in the
region of constant twist [Fig. 4(b)]. In order to clarify the
phenomenon, we have analyzed the ribbon model in this
geometry. We have solved the eigenvalue problem given by
Eq. (9), with the distribution of twist calculated with
Eq. (10) (with constant values of D � 0:578 and c �
0:72). Similarly to RD simulations, an instability develops
in the region of constant twist when �max

w is large enough,
but its threshold differs from the sproing threshold for
periodic domains [Fig. 4(c)]. The instability is nonetheless
related to sproing. The reason is that periodic BC allow the
growth of convective instabilities that decay with nonflux
BC. For a complex growth rate �, four complex wave
numbers ki��� satisfy the dispersion relation Eq. (11). The
relevant sproing absolute spectrum, for a given constant
twist in a large domain, lies on the curve of complex �
such that Im�k2���� � Im�k3����, with the ki ordered by
increasing the imaginary part [24,25]. For low twist, this
curve lies entirely in the Re���< 0 half plane. The abso-
lute instability threshold twist, for which the curve crosses
the � imaginary axis [26], coincides with the large L limit
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FIG. 4. (a) Instability onset vs domain size L, for domains with
a jump in excitability. For fixed L, �t is increased until the
system becomes unstable. The corresponding critical twist (solid
circles) is plotted together with the fit (dashed line): �cmax �
0:344� 31:3=L2. For comparison, the onset of sproing for
periodic BC (�cw ’ 0:29) is also shown (dotted line), for � �
0:03, that corresponds to the critical value of �t in a large sys-
tem. (b) Solutions for �b � 0:01 and �t � 0:031. (c) Model
critical twist obtained by solving the eigenvalue problem vs L for
the distribution of twist shown in Fig. 2(a) (diamonds), a
constant twist in half of the system (squares), and vs L=2 for a
constant twist in the whole system (circles). For comparison, we
also show the onset of convective (dotted line), absolute insta-
bility (long-dashed line), and the onset obtained with the double
root criterion (short-dashed line). (d) Critical modes obtained
from the eigenvalue problem, using the distribution of twist, for
L � 150.
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of �c�L� as shown in Fig. 4(c). The most unstable modes at
threshold are two counterpropagating waves, with the same
spatial growth rate, and nonzero group velocity. The simi-
larity between the critical modes for the ribbon model and
the RD equation [Fig. 4(d)] further shows that sproing is
also a likely explanation of the latter case and of the
experimental observations [3,4].

In conclusion, the proposed ribbon model provides a
semiquantitative description of the motion of twisted scroll
waves and a clear understanding of several features that are
difficult to extract directly from RD equations. This will
hopefully help to further analyze scroll wave dynamics in
complex media and to better assess the effects of gradients
of electrophysiological properties and other complicating
features in the cardiac muscle.
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