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Neuronal Growth: A Bistable Stochastic Process
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The fundamentally stochastic nature of neuronal growth has hardly been addressed in neuroscience. We
report on the stochastic fluctuations of a neuronal growth cone’s leading edge movement, the basic step in
neuronal growth. Describing the edge movement as a stochastic bistable process leads to an isotropic noise
parameter that is successfully used to test the model. An analysis of growth cone motility confirms the
model, and predicts that linear changes of the bistable potential, as known from stochastic filtering, result
in directed growth cone translocation.
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FIG. 1 (color online). (a) Confocal fluorescence image of a
GFP-actin transfected neuronal NG108-15 growth cone. The
edge position was determined from each image by extracting a
line profile along an angle dependent direction taken from the
c.m. To get subpixel position resolution, a Gaussian function was
fitted to the derivative of each of these line profiles (b). The fit
properties were used to determine the reliability of the detection,
visualized in (a) by white dots for unreliably detected and black
for reliably detected edge positions. The 95% confidence interval
for the fit gives an error of <6 nm.
Neuronal growth is a complex process in which an
intriguing machine at the tip of a growing neurite, called
the growth cone (Fig. 1), maneuvers itself through a devel-
oping organism by integrating chemical and mechanical
signals. The motility of these structures is based on the
dynamics of a polymer network made up of semiflexible
actin filaments, arranged in a sheetlike structure around the
center of a growth cone, also known as the lamellipodium
[1]. While biologists generally assume a causal relation
between the external signaling and the cellular activities,
the inherent stochastic nature of biochemical reactions in
small subcellular structures is generally neglected. In ad-
dition to this internal stochasticity, the randomness of the
extremely weak external signals should be considered. It
has been demonstrated that the growth cone is able to
detect chemical signal gradients as small as a difference
of a single molecule across its structure [2], and that such
weak signal intensities are very likely to undergo rapid and
large fluctuations. This stochastic viewpoint of neuronal
growth raises the question of how nature ensures the cor-
rect wiring of the central nervous system. Surprisingly, an
analysis of the stochastic processes involved in neuronal
growth has only been addressed in the context of dynamic
instabilities of microtubule and filopodial dynamics [3],
while examination of the lamellipodium dynamics of
growth cones has not received much attention. Recent
works have analyzed the edge dynamics of fibroblasts
[4], and focused on detected periodic movements instead
of the stochastic fluctuations as found in our experiments
on neuronal growth cones.

To gain insight into the stochasticity of neuronal growth,
we recorded the growth cone edge evolution of a neuronal
cell line (NG108-15), transfected to express fluorescently
labeled actin monomers (pEGFP-human-�-actin [5]) for
edge motility visualization. Labeled actin is an effective
marker since the lamellipodium is known to be filled with
monomeric and filamentous actin [6]. Figure 1 shows a
confocal fluorescent image of these growth cones and ex-
plains the method used to determine the edge position with
subpixel resolution of�6 nm. For each growth cone we re-
corded a 10 min time series with a time lag of 5 sec be-
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tween images. After Gaussian filtering, the edge position
was measured with respect to a pixel based center-of-mass
(c.m.) [7]. The edge speed was evaluated by substracting
the edge positions of subsequent images. This was done in
500 equally spaced angular directions to obtain the edge
speed for each direction. For this, the mean c.m. of both
images was used and reevaluated for subsequent image
pairs.

Since the edge detection method presented in Fig. 1
relies on an accurate fit, we used the fit parameters and
the fit quality to exclude nonreliably detected edge posi-
tions. For further analysis, we separate the measured edge
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speed evolution for each direction into distinct growth and
retraction phases, with positive and negative speeds, re-
spectively. First, we are interested in the mean velocity dis-
tribution of the growth and retraction phases. Throughout
our analysis, velocity always denotes the mean velocity
within the mentioned phases. Figure 2(a) shows the result-
ing velocity distribution for a given growth cone, during
the whole observation time, and for all acquired angles.
The histogram shows that the lamellipodium moves with
both a prominent protrusion and retraction velocity. From
our experiments on 24 growth cones, we measured an av-
erage retraction velocity of�1:60� 0:55 �m=min and an
average protrusion velocity of 1:56� 0:69 �m=min .
Such a velocity distribution suggests that the growth cone’s
edge follows a two state process behavior. In order to
determine the extent to which the switching between these
states is stochastic, we examined the residence time distri-
FIG. 2 (color online). Statistics of lamellipodial fluctuations.
(a) The measured velocity probability distribution (bars) of a
growth cone typically shows two prominent protrusion and
retraction velocities. For the fitting of the histogram, we assume
a favored protrusion and retraction velocity, influenced by the
inherent noise of a biological system. Thus, it is adequate to fit
Gaussians to the histograms and we determined the respective
maxima at �2:36� 0:11 �m=min (dotted line) and
2:42� 0:18 �m=min (solid line) with the displayed fits.
(b) presents a log plot of the residence time distribution (bars),
and an exponential fit-function (solid line) const� exp��rMt�,
where rM denotes the measured decay rate and t time. The decay
rates in this example are 0:08� 0:01 s�1 for the retraction and
0:11� 0:01 s�1 for the protrusion. (Errors, and error bars rep-
resent the 95% confidence interval for fits used.)
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bution (RTD), which gives the global probability of staying
a given time in either a growing or retraction state. The
RTD combines the data collected for all directions and over
the whole measurement period, and is presented in
Fig. 2(b). The logarithmic plot proves an exponential
behavior of this distribution, and the exponential fit func-
tion gives a surprisingly accurate description of the bio-
logical process. The fitted exponential decay values for the
presented growth cone are 0:08� 0:01 s�1 and 0:11�
0:01 s�1 for the switch from retraction to protrusion and
vice versa.

An exponential decay of the RTD is a characteristic of
stochastic processes with statistically independent noise,
well studied in terms of the famous Kramers problem [8].
The exponential decay was highly reproducible and for
both directions we measured decay rates from 0:078�
0:021 s�1 to 0:147� 0:021 s�1. In addition, the accuracy
of the fits was excellent, with the r-square value always
above 0.95. The exponential decay of the RTD shows that
the edge velocity switches in a stochastic fashion between
the protrusion and the retraction state. A closer look at the
RTD presented in Fig. 2(b) shows that the exponential
decay of the protrusion states is faster than that of the re-
traction state. Additionally, the mean velocity distribution
shows a significantly sharper peak of the dominant retrac-
tion velocities. This behavior was generally observed for
the measured growth cone fluctuations, and is reflected in
the average decay rate of retractions at 0:096� 0:012 s�1,
which is smaller than the average decay rate of protrusions
at 0:107� 0:019 s�1. Such a relation between the mea-
sured histograms of velocity distribution and of the RTD
suggests that both are the result of a bistable stochastic pro-
cess, well known and studied since Kramers’ famous pub-
lication [8]. To model the measured probability densities
with a bistable stochastic process, and to test this assump-
tion, we started with the following Langevin equation:

dv�t�
dt
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where v�t� is the edge velocity at a given time, V�v� is a
velocity dependent potential, � is the noise parameter, and
��t� represents Gaussian white noise with h�i � 0 and
h��t���t� ��i � ��t� �t� ���. It is important to note,
that this is a Langevin equation in velocity space. This is
equivalent to a biased random walk whose position is
controlling the velocity of the edge. The edge position
itself is not directly described by this equation. As de-
scribed in [9], this Langevin equation leads to the follow-
ing Fokker-Planck equation:
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where p�v� is the velocity probability distribution. In the
cell line used, the macroscopic growth cone parameters
like growth direction and translocation speed usually vary
on the time scale of 30 to 60 min. Thus, we assume that the
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FIG. 3 (color online). (a) Calculated potential using Eq. (4).
The arrows visualize the stochastic switching between a
retraction (left) and a protrusion (right) state. � and � denote
the potential minima, and � the potential maxima. The potential
can be used to infer the noise parameter for switching from
retraction to protrusion and vice versa. (b) The resulting noise
parameters for 23 experiments. �rp is presented by a circle and
�pr by a cross. [For better readability, one experiment with val-
ues �rp � 16:6� 8:2 ��m

min�
2 s�1 and �pr � 15:2� 7:7 ��m

min�
2 s�1

was omitted in the graph.]
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edge velocity statistics do not change during the 10 min
measurement period and use the stationary solution
( @p�v�@t � 0) of this Fokker-Planck equation, which relates
the potential V�v� and the probability distribution p�v� as
follows:

p�v� � const� exp
�
�
V�v�
�

�
; (3)

where const is a normalization constant. Using the mea-
sured velocity probability distribution, we can get the
potential by taking the negative ln:

V�v�
�
� � lnp�v� � const: (4)

Thus, V�v�� is, besides the normalization constant, experi-
mentally measurable. To get a relation between the proba-
bility distribution of the velocity [Fig. 2(a)] and the
residence time distribution [Fig. 2(b)], we follow
Kramers’ approach to quantify the decay of a bistable
system [8,9]. Kramers relates the decay value of a meta-
stable state to the potential barrier, and to the curvature of
the potential at the maxima and the minima of the meta-
stable states [Fig. 3(a): �;�] and the unstable state
[Fig. 3(a): �]. Hence, with a given potential V, we can
get the reduced Kramers rate, i.e., the Kramers decay rate
rK, over the noise parameter �, given by

rK
� �
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�
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where V00��� and V 00��� are the second derivatives of the
potential at the metastable state (�) and at the instable peak
(�), and �V is the potential difference between these
states. The measured mean curvatures of the scaled poten-
tial are V 00���=��17:9�3:1�10�3 �min

�m�
2, V 00���=� �

�92:9� 27:9� 10�3 �min
�m�

2, and V00���=� � 15:7�

2:5� 10�3 �min
�m�

2. Using this method, we get a reduced
Kramers rate for the switching from a retraction to a
protrusion state and vice versa by replacing V00��� with
V 00��� and changing the �V accordingly. Thus, we can now
obtain the noise parameter �, by comparing the measured
decay rate rM of the RTD [Fig. 2(b)] with the reduced
Kramers decay rate rK

� . Numerically, this gives two inde-
pendent noise parameters for the transition from a protru-
sion to a retraction phase �pr and back �rp:

�pr �
rMpr

�rK� �pr
; �rp �

rMrp

�rK� �rp
: (6)

Applying this model to the measured lamellipodium fluc-
tuations, we can now compute the two noise parameters
�pr and �rp.

To test if the model of a stochastic driven bistable
process is an adequate description for the measured distri-
bution, we can compare the two measured noise parame-
ters with each other. In the case of a stochastic bistable
process, the noise parameters should be independent from
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the switching direction, as the noise should be isotropic.
This is physically equivalent to the requirement that the
two determined parameters are equal. Indeed, following
the described procedure, we found that in 21 out of 24
growth cones, the two noise parameters were equal within
the experimental error, as presented in Fig. 3(b). As men-
tioned before, the physical meaning of this noise parameter
is a diffusion constant in velocity space.

Based on the above, our interpretation is that the experi-
ments reflect the outcome of a bistable stochastic process
that controls the polymerization at the leading edge of the
lamellipodium. Physically, the forward motion of the la-
mellipodium depends largely on the polymerization of
actin filaments [10], which in turn depends strongly on
the actin monomer concentration and free filament ends
[11]. The backward motion, however, is not due to depo-
lymerization, but instead depends on the rearward motion
of the whole actin network towards the center of the growth
cone. This process, known as retrograde flow [12], varies
slowly as compared to the aforementioned edge fluctua-
tions. Driven by inherently stochastic myosin motors, the
retrograde flow changes slowly since the coupling of the
motors through the viscoelastic actin gel only allows a
weak correlation, but no processivity. Superimposed on
this backward motion, the lamellipodium edge fluctuates
on a timescale of seconds, driven by changes in the poly-
merization speed which results in the measured stochastic
behavior. The measurements and the presented model
show that the lamellipodium fluctuations of neuronal
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FIG. 4 (color online). (a) Fluorescent image of a GFP-actin
transfected growth cone, translocating in the direction of the
arrow. The two marked areas, � and �, are independently
analyzed, and the measured potentials are presented in (b).
Whereas the potential perpendicular to the direction of growth
(solid line) favors the retraction states, the potential in the
direction of growth presents a tilted potential that favors the
growth of the lamellipodium.
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growth cones can be described by a simple bistable sto-
chastic process which controls actin polymerization.
Possible molecular mechanisms include an inherent sto-
chastic polymerization rate, a stochastic capping and un-
capping of free filament ends, and a fluctuative sequester-
ing of actin monomers.

Since the presented model relates the long-term move-
ment of the growth cone to the statistics of the edge
fluctuation, the local potential in the direction of growth
should favor growth periods over retraction periods. To test
this prediction, we examined a growth cone which trans-
located over a 10 min measurement period. Figure 4 shows
such a growth cone, and presents the potentials for the
direction of growth (�) and the direction perpendicular to
growth (�). Our analysis shows that in the direction per-
pendicular to the direction of growth (�), retraction is
favored. This is illustrated by the slower decay of the
retraction states (5:6� 2:1� 10�2 s�1) as compared to
the protrusion states (9:9�1:4�10�2 s�1). Furthermore,
in the direction of growth (�), the potential is shifted to
favor protrusions, and the decay rate of the retraction states
(7:7� 0:8� 10�2 s�1) was slightly faster than the decay
rate of the protrusion states (7:1� 1:1� 10�2 s�1). The
presented Kramers analysis gives noise parameters of
��rp�1:32�0:84 ��m

min�
2 s�1, ��pr�1:36�0:74 ��m

min�
2 s�1,

��rp � 1:35� 0:57 � �m
min �

2 s�1, and ��pr � 2:08 �
0:92 � �m

min �
2 s�1.
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As mentioned above, the growth cone has to detect weak
signals in a noisy environment, so it is seemingly impos-
sible that signals below the noise level are detectable. To
overcome this problem, which is critical for the proper
development of an organism, our data allows the hypothe-
sis that nature uses a process known as stochastic filtering
or stochastic resonance, that has been originally proposed
to explain the periodic recurrences in global climate dy-
namics [13]. This phenomenon has been examined in detail
both theoretically [14] and experimentally [15,16], and it
has been shown that it is also applicable to nonperiodic
input signals [17]. To utilize this elegant stochastic signal
amplification, the cell would have to be able to influence
the noise parameter to push the system to the point of
maximal sensitivity. The observed changes in measured
noise values indicate that this noise tuning may indeed be
taking place in the observed neurons.

The authors would like to thank A. Ehrlicher,
M. Goegler, and D. Koch for helpful discussions, and
Mrs. Marianne Duda and the DFG (KA 1116/3-2) for
financial support.
3-4
*Electronic address: tobetz@physik.uni-leipzig.de
[1] P. R. Gordon-Weeks, Neuroscience (Oxford) 21, 977

(1987).
[2] W. J. Rosoff, J. S. Urbach, M. A. Esrick, R. G. McAllister,

L. J. Richards, and G. J. Goodhill, Nat. Neurosci. 7, 678
(2004).

[3] D. J. Odde and H. M. Buettner, Biophys. J. 75, 1189
(1998).

[4] H. G. Dobereiner, B. Dubin-Thaler, G. Giannone, H. S.
Xenias, and M. P. Sheetz, Phys. Rev. Lett. 93, 108105
(2004).

[5] C. Ballestrem, B. Wehrle-Haller, and B. A. Imhof, J. Cell
Sci. 111, No. 12, 1649 (1998).

[6] K. Sobue, Neurosciences Res. 18, 91 (1993).
[7] B. Stuhrmann, M. Goegler, T. Betz, A. Ehrlicher, D. Koch,

and J. Kas, Rev. Sci. Instrum. 76, 035105 (2005).
[8] H. A. Kramers, Physica (Amsterdam) 7, 284 (1940).
[9] C. Gardiner, Handbook of Stochastic Methods, Springer

Series in Synergetics; [13] (Springer, Berlin, 2004), 3rd
ed.

[10] A. Ehrlicher, T. Betz, B. Stuhrmann, D. Koch, V. Milner,
M. G. Raizen, and J. Kas, Proc. Natl. Acad. Sci. U.S.A. 99,
16 024 (2002).

[11] A. Mogilner and G. Oster, Curr. Biol. 13, R721 (2003).
[12] C. H. Lin and P. Forscher, Neuron 14, 763 (1995).
[13] R. Benzi, A. Sutera, and A. Vulpiani, J. Phys. A 14, L453

(1981).
[14] L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni,

Rev. Mod. Phys. 70, 223 (1998).
[15] A. Simon and A. Libchaber, Phys. Rev. Lett. 68, 3375

(1992).
[16] D. Babic, C. Schmitt, I. Poberaj, and C. Bechinger,

Europhys. Lett. 67, 158 (2004).
[17] J. J. Collins, C. C. Chow, A. C. Capela, and T. T. Imhoff,

Phys. Rev. E 54, 5575 (1996).


