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Quantum Effects in a Half-Polarized Pyrochlore Antiferromagnet
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We study quantum effects in a spin-3=2 antiferromagnet on the pyrochlore lattice in an external
magnetic field, focusing on the vicinity of a plateau in the magnetization at half the saturation value,
observed in CdCr2O4 and HgCr2O4. Our theory, based on quantum fluctuations, predicts the existence of a
symmetry-broken state on the plateau, even with only nearest-neighbor microscopic exchange. This
symmetry-broken state consists of a particular arrangement of spins polarized parallel and antiparallel to
the field in a 3:1 ratio on each tetrahedron. It quadruples the lattice unit cell, and reduces the space group
from Fd�3m to P4332. We also predict that for fields just above the plateau, the low-temperature phase has
transverse spin order, describable as a Bose-Einstein condensate of magnons. Other comparisons to and
suggestions for experiments are discussed.

DOI: 10.1103/PhysRevLett.96.097207 PACS numbers: 75.10.Jm, 75.25.+z
FIG. 1 (color online). Planar projection of the R state, stabi-
lized by quantum fluctuations. Dots indicate minority spins.
Empty triangles represent the projection of down pointing tetra-
hedra, while triangles with links from their center represent up
pointing tetrahedra, and the upper corner above the plane of sites
of the triangle corners. The dashed lines are parts of the next
layer of tetrahedra.
Frustrated quantum magnets, in which many symmetry-
unrelated states are classically degenerate, are a fascinating
venue in which to observe emergent phenomena. In most
frustrated materials, the degeneracy is lifted classically, by
lattice distortions (Jahn-Teller, spin-Peierls [1]), or longer-
range (e.g., dipolar) interactions [2,3]. More intriguing is
the possibility that the degeneracy can be removed by
quantum fluctuations. In such a ‘‘quantum order by disor-
der’’ scenario, the system would pick a ground state by
maximally delocalizing among many degenerate classical
states, thereby minimizing its quantum zero point energy.
In toy models, this can lead to exotic ordered states (such as
valence bond solids), or even ‘‘quantum spin liquid’’ [4]
states, where the classical degeneracy is split without any
symmetry breaking. Experimentally, clean signatures of the
lifting of degeneracy by quantum fluctuations have, how-
ever, remained elusive, presumably because of the domi-
nance of the classical mechanisms discussed above.

In this Letter we describe a theoretical study of quantum
effects in the insulating chromium oxides, CdCr2O4 and
HgCr2O4, in which magnetic spin-3=2 Cr3� ions form a
pyrochlore lattice (a network of corner-sharing tetrahedra).
Because of the half-filled t2g magnetic levels, these mate-
rials lack orbital degeneracy, and are also very isotropic
magnetically. An appropriate minimal theoretical model is
thus the nearest-neighbor pyrochlore lattice Heisenberg
antiferromagnet, with Hamiltonian

H � J
X
hiji

Si � Sj �H
X
j

Szj; (1)

where Si is a spin-3=2 operator on site i of the pyrochlore
lattice, hiji indicates the sum is over nearest-neighbor
bonds, and we have taken the field H to point along the z
axis. Most intriguingly, these materials display a robust
low-temperature magnetization plateau in an applied mag-
netic field, with magnetization well quantized at half its
saturation value [5]. While there has been a great deal of
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prior theoretical work on quantum effects in zero magnetic
field [6,7], the connection to experiment seems unclear.
Here we will instead focus on the physics on and near the
plateau. First, we predict a magnetic structure on the
plateau shown in Fig. 1, with space group P4332, which
we call the ‘‘R’’ state. Second, we predict the existence of
XY order (i.e., transverse to the field) at low temperature
for fields just above the plateau. If quantum fluctuations
dominate over second neighbor exchange, the transverse
order is ferromagnetic.

These conclusions obtain both for Eq. (1) and a modified
model including spin-lattice coupling to local Einstein
bond phonons, which Penc et al. [8] have suggested play
an important role. While we agree such coupling likely
supports the large width of the plateau, our conclusions
with respect to the ordering symmetry are essentially in-
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dependent of it. For clarity of presentation, we therefore
suppress spin-lattice coupling in the following.

Our approach relies on the substantial polarization in the
vicinity of the plateau, which indicates that, on average, the
transverse components of the spins are reduced. Moreover,
the existence of a plateau with zero differential suscepti-
bility � � @mz=@h � 0 at T � 0 implies the absence of
transverse ordering, hS�i i � 0. We therefore split the
Hamiltonian into terms involving longitudinal and trans-
verse spin components, and treat the latter perturbatively
(though we will work to rather high orders). Specifically,
H 0 �H 0 �H 1, with

H 0 �
Jz
2

X
t

��Szt � h�2 � h2	 � Jz
X
i

�Szi �
2; (2)

H 1 �
J?
2

X
hiji

�S�i S
�
j � H:c:�; (3)

where S�i � Sxi � iS
y
i are the usual ladder operators, Szt �P

j2tS
z
j is the sum of longitudinal spin components on a

tetrahedron labeled by t, and we have introduced the
dimensionless magnetic field h � H=2J (we take h > 0
without loss of generality). For bookkeeping purposes, we
have written distinct longitudinal and transverse exchange
couplings Jz; J?, though we are ultimately interested in
Jz � J? � J. We note that ‘‘easy-axis’’ perturbation the-
ory in � 
 J?=Jz becomes increasingly accurate at larger
h, and that the symmetry of H 0 is preserved for any�> 0.
This gives us further confidence in the qualitative predic-
tions of easy-axis perturbation theory.

We now sketch our derivation of an effective model
describing the quantum mechanical lifting of the classical
degeneracy. Consider first the zeroth order Hamiltonian,
Eq. (2). It is straightforward to see that H 0 has three types
of ground states, depending upon h: for h < 1:5, each
tetrahedron has two spins with Szi � �

3
2 and two spins

with Szi � �
3
2 ; for 1:5< h< 4:5, the half-magnetized

region, each tetrahedron has 3 ‘‘majority’’ spins with Szi �
� 3

2 and one ‘‘minority’’ spin Szi � �
3
2 ; and all spins are

fully polarized for h > 4:5. Therefore, this simplistic view
predicts 3 magnetization plateaus exist—zero, half, and
full magnetization.

Focusing first on the plateau of interest, the zeroth order
‘‘3:1’’ ground states are extensively degenerate, due to the
freedom to locate the minority spin of each tetrahedron.
We may view the transverse terms in Eq. (3) as inducing
‘‘quantum fluctuations’’ into these states; in particular, the
action of H 1 transfers a total spin �Sz � �1 between
nearest-neighbor sites. Technically, this must be analyzed
by degenerate perturbation theory (DPT).

We define the projection operator, P , onto the ground
state plateau subspace. Consider any exact eigenstate j�i.
Its projection j�0i � P j�i satisfies the ‘‘effective
Schrödinger equation’’
09720
�
E0 � PH 1

X1
n�0

GnP

�
j�0i � Ej�0i; (4)

where the resolvent operator G � 1
E�H 0

�1� P �H 1 is

linear in J?. Because the resolvent contains the exact
energy E, Eq. (4) is actually a nonlinear eigenvalue prob-
lem. However, to any given order of DPT, E may be
expanded in a series in J? to obtain an equation with
a true Hamiltonian form within the degenerate manifold.
Once j�0i and E are known, the full wave function can be
reconstructed as j�i � �1� G��1j�0i �

P
1
n�0 G

nj�0i.
To understand the ultimate nature of the ordered state on

the plateau, we must carry out DPT at least to the lowest
order at which the degeneracy is lifted. Our approach will
be to derive the lowest-order diagonal (in the Szi basis) and
off-diagonal terms in J? which remove the degeneracy.
First, note that any off-diagonal term must flip spins in
such a way as to preserve the 3:1 constraint on each
tetrahedron. This can only be accomplished by flipping
spins around a nontrivial closed loop on the pyrochlore
lattice. The smallest such loop involves flipping spins on 3
different bonds, and flipping a spin from� 3

2 to� 3
2 requires

H 1 to act 3 times, so off-diagonal processes occur first at
ninth order [for general S, they occur at O�J6S

? �]. Diagonal
processes can occur sooner. The first-order splitting van-
ishes, since the action of H 1 creates two tetrahedra with
spin Szt � 3. The energy of the plateau state does shift
relative to other levels at second order. Although it is
more nontrivial to see, in fact, splitting within the classical
manifold does not occur until sixth order (this is true for
any S). The reason for this is somewhat involved [9], but
follows from the locality of H 1 and the strong 3:1
constraint.

By straightforward but somewhat involved calculations,
including a similarity transformation to change the sign of
the ring exchange term (same as in Ref. [4]), one can
compute the lowest-order diagonal and off-diagonal con-
tributions to the effective Hamiltonian, H eff , explicitly.
We find

H eff � �6Jz
X
P

ÊP � c�9Jz
X
P

�jxAihxBj � H:c:�; (5)

where the sums are over all hexagonal plaquettes P, and
the states jxAi, jxBi represent the two ‘‘flippable’’ con-
figurations (A=B) with alternating majority and minority
spins around the plaquette. The operator ÊP is a diagonal
operator representing the sixth order energy splitting of
plaquette P. It takes the values ÊP � �0;�

144
25 ;�

27
100 ;

� 801
500 ;�

9801
6250� � �0;�5:76;�0:27;�1:60;�1:57�, respec-

tively, for the configurations �""""""; #"#"#"; #"""""; #"#"""; #""#""�
(and cyclic permutations), where " = # denote majority/
minority spin states, respectively. This diagonal interaction
is equivalent to a combination of further neighbor Ising
exchange couplings, plus an additional 3-spin interaction
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term; the plaquette representation is, however, more con-
venient and simpler. The constant c � 53178588

12371645 � 4:3.
The Hamiltonian in Eq. (5) (acting within the 3:1 Hilbert

space) is the basis for our discussion of the ordered state on
the plateau. Inspection of ÊP shows that the A=B configu-
rations are significantly more favorable than all others. A
natural approximation is then to ignore the energy differ-
ences between other configurations, which gives

H QDM � V
X
P

�jxAihxAj � jxBihxBj�

� K
X
P

�jxAihxBj � H:c:�; (6)

where, extrapolating to the physical limit �! 1, we have
V � �5:76 J, K � cJ � 4:3 J, while in the strict small �
limit, V=K ! �1. Equation (6) is useful because it maps
directly to a type of ‘‘quantum dimer model’’ (QDM) [10].
In particular, the pyrochlore sites can be mapped onto the
links of a diamond lattice, whose sites lie in the centers of
pyrochlore tetrahedra. A minority spin can be represented
as a ‘‘dimer’’ occupying the corresponding link, and the
3:1 states become nonoverlapping dimer coverings of
the diamond lattice. The V and K terms map directly to
standard ‘‘potential’’ and ‘‘kinetic’’ terms for these dimer
configurations [10].

QDMs of this form have been considered on a number of
two and three-dimensional lattices [10,11]. Fixing K > 0,
the ground state depends upon the dimensionless parame-
ter v � V=K, and a few general conclusions can be drawn.
The Rokhsar-Kivelson point, v � 1, is exactly soluble, and
demarks a boundary between ordering into configurations
with no A=B plaquettes (for v > 1) and, for three-
dimensional bipartite lattices like the diamond, a spin
liquid phase with no broken symmetry (for vc1 < v & 1
[4], with some critical coupling vc1, which is usually
positive). For v < vc2 < vc1, the ground state is again
ordered, and adiabatically connected to the diagonal
ground state selected by the diagonal V < 0 term alone.
For the examples (square, honeycomb, and triangular lat-
tices) in which the phase diagram has been studied by
quantum Monte Carlo methods [12], the critical coupling
vc2 is either slightly negative or even positive, vc2 >�0:2.
The persistence of the ‘‘diagonal’’ state to small v can be
readily understood. For v! �1, the energy is minimized
by the diagonal state which contains the maximum density
of flippable A=B hexagons. Such a configuration is also the
one most connected by the K term to other 3:1 states.
Hence, by order by disorder reasoning, an appropriate
superposition ‘‘centered’’ (in Hilbert space) around the
diagonal ground state above is energetically favored by
both terms. Explicit variational wave functions for H eff in
this spirit will be described in a future long publication.
What or how many intervening state(s?) might occur for
vc2 < v< vc1 is not known, and it is even possible that
there might be no intermediate state, and instead a direct
09720
transition from the diagonal ordered state to a spin liquid at
v � vc2 � vc1.

From this reasoning, in the extrapolation to � � 1,
which gives v � �1:3, we expect the ground state selected
by quantum fluctuations to have the same symmetry as that
of the easy-axis limit v! �1. In particular, for the QDM
in this limit, we require the 3:1 configuration with the
highest density of A=B hexagons. Because these hexagons
overlap, and the 3:1 configuration space is highly con-
strained, this is not a trivial problem. It is instructive to
examine a single primitive unit cell of the pyrochlore
lattice, which is a region of space enclosed by 4 hexagonal
plaquettes. By careful inspection, and making use of the
3:1 constraint, one finds that at most one of these hexa-
gons can be of A=B type. Therefore the maximum fraction
of A=B hexagons is 1

4 .
By extensive analysis [9], we have found one single

candidate, shown in Fig. 1, which saturates this upper
bound on the density of A=B hexagons, and moreover,
gives the lowest energy that we have been able to find for
the full diagonal term (

P
PÊP) with all plaquette energies

included. Having the maximal density of potential resonat-
ing plaquettes, we call it the R state. It has a magnetic unit
cell consisting of 4 structural pyrochlore unit cells, and has
the symmetries of the P4332 space group—particularly
significant is that this state preserves all rotation symme-
tries of the pyrochlore lattice (up to translations). This
implies that, contrary to the suggestion in Ref. [5], only
isotropic magnetostriction is expected for the R state, and
not a rhombohedral distortion along a h111i axis. We note
that a Landau theory analysis predicts the symmetry-
breaking transition from the P4332 space group (R state)
to Fd�3m (pyrochlore symmetry) is first order [9], in agree-
ment with the experimental conclusions [13].

We now turn to other effects of quantum fluctuations.
Quantum effects lead to a spin gap, �, on the plateau, and
consequently an activated temperature dependence,
Mz�T� �Mz�0� / exp����h�=kBT�. Another quantum
effect is a suppression of the local ‘‘staggered’’ moment,
even at T � 0. To leading order in DPT, the difference of
the moment on majority and minority sites is suppressed to
hSzmaxi � hS

z
mini< 2:2, below the classical value hSzmaxi �

hSzmini � 3.
Experiments have studied the low-temperature behavior

on exiting the plateau at lower and higher fields, hc1; hc2,
respectively. The lower edge of the plateau for both
CdCr2O4 [5] and HgCr2O4 [13] shows a jump in magne-
tization, which then decreases linearly down to zero mag-
netic field, suggesting the low-field state is adiabatically
connected with the zero field state. The higher field edge,
observed only in HgCr2O4, shows a continuous transition
out of the plateau, and a continuous evolution with no
further jumps up to the highest fields measured. There is,
however, some indication of a ‘‘kink,’’ possibly related to
the expected lattice symmetry restoration, for fields above
the plateau but below full saturation.
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The first-order/continuous nature of the transitions at the
upper or lower edges can be explained classically [8], and
occurs already in the trivial problem of a single classical
tetrahedron. Classically, however, above the plateau,
though the spins become noncollinear, the ordering of
the transverse moments, if present at all, is critically de-
pendent upon the nature of further neighbor interactions.

By contrast, it is determined in the quantum theory even
for the nearest-neighbor model. In general, a continuous
quantum transition off the plateau should be described by
the ‘‘Bose-Einstein condensation’’ (BEC) of a single mag-
non excitation with �Sz � �1, above the R state, whose
gap vanishes at the plateau edge. The resulting state above
the plateau has therefore transverse spin order, hS�i i � 0,
in agreement with classical expectations. The precise spa-
tial arrangement of the transverse ordering is determined
by the symmetry of the lowest energy magnon, which must
form an irreducible representation (irrep) of P4332. In the
easy-axis DPT, the magnon is formed from a superposition
of states with a single minority spin changed from Szi �
� 3

2 to Szi � �
1
2 . At O��2�, the magnon can hop between

minority sites, and crucially, the effective hopping ampli-
tude is negative, despite J > 0, because it occurs by virtual
hopping through a majority site. The minimum energy
magnon state then is a uniform plane wave (trivial irrep),
which implies the transverse spin order is ferromagnetic.
That is, for h * hc2 the system has the same space group
symmetry as the R state. While there is no guarantee the
trivial irrep remains lowest in energy for � � 1, it is our
best guess for the nearest-neighbor model. If second neigh-
bor exchange J2 is significant, this conclusion may change.
In particular, if J2 is larger than the effective hopping
amplitude and antiferromagnetic, the lowest energy mag-
non has a different symmetry. The resulting transverse
order is more complex, with a magnetic unit at least 3 times
larger than that of the R state [9]. In any case, the BEC
picture implies quite generally that the symmetry for h *

hc2 is as low or lower than that of the R state. Therefore,
since the fully polarized state has the full pyrochlore
symmetry, with increasing field there must be a transition
from P4332 to Fd�3m before the saturation field. This may
be associated with the kink observed experimentally.

The classical model of Penc et al. [8] successfully ex-
plains many experimental features of CdCr2O4 and
HgCr2O4. However, classically, additional second and
third neighbor microscopic Heisenberg interactions are
required to stabilize the R state, as suggested by Ueda
et al. [5]. Our results show that quantum fluctuations gen-
erate effective interactions that stabilize the R state even
when the microscopic exchange is purely nearest neighbor.
Furthermore, quantum fluctuations may determine the
symmetry of the transverse spin order expected just above
the plateau, which, if measured by neutrons, would be very
telling. Experimentally, the second and third neighbor ex-
changes could be determined by inelastic neutron measure-
09720
ments of the magnon spectra in the fully polarized state, as
has been done in Cs2CuCl4 [14]. A more direct test of the
relevance of quantum fluctuations would be to look for
signatures of BEC criticality (as in Refs. [15,16]) at the
upper edge of the plateau in HgCr2O4. We note that Ueda
et al. [13] observed an increase of hc2 with increasing
temperature, concluding that ‘‘thermal fluctuations stabi-
lize collinear spin configurations.’’ The BEC picture gives
an alternative explanation: the BEC temperature grows as
the magnon density increases.

Theoretically, it is intriguing to contemplate the possi-
bility that the plateau phase might be close to a quantum
phase transition to a spin liquid state. A field-theoretic
analysis, based on the mapping of the 3:1 Hilbert space
to a gauge theory with projective symmetry, indeed pre-
dicts the R state as the simplest phase proximate to the spin
liquid [9]. Other calculations, predictions, and comparison
to different theoretical approaches will be made in a future
publication [9].
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