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Non-Gaussian Low-Frequency Noise as a Source of Qubit Decoherence
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We study decoherence in a qubit with the distance between the two levels affected by random flips of
bistable fluctuators. For the case of a single fluctuator we evaluate explicitly an exact expression for the
phase-memory decay in the echo experiment with a resonant ac excitation. The echo signal as a function
of time shows a sequence of plateaus. The position and the height of the plateaus can be used to extract the
fluctuator switching rate � and its coupling strength v. At small times the logarithm of the echo signal is
/ t3. The plateaus disappear when the decoherence is induced by many fluctuators. In this case the echo
signal depends on the distribution of the fluctuators parameters. According to our analysis, the results
significantly deviate from those obtained in the Gaussian model as soon as v * �.
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FIG. 1. Schematic distribution of charged traps located near
the gate surface and producing oppositely charged images.
Introduction.—Quantum dynamics of two-level systems
has recently attracted special attention in connection with
ideas of quantum information processing. The central
problem regarding operation of qubits and logical gates
is maintaining the phase coherence in the presence of a
noisy environment [1]. At low temperatures the noise is
dominated by discrete sources; it is caused by random
charge exchange between localized states and electrodes
in the Josephson [2] or semiconductor double quantum-dot
qubits [3]. The charge fluctuations are often modeled by a
set of harmonic oscillators with certain frequency spectrum
[4,5]. In these ‘‘spin-boson’’ models the qubit decoherence
is determined solely by the pair correlation function of
random forces, SX�f�, that implicitly assumes the noise to
be Gaussian [6]. This assumption, however, does not hold
in most practical systems where SX�f� / 1=f and the
processes have extremely broad distribution of the relaxa-
tion times [7].

To understand the role of the non-Gaussian statistics, we
follow [8] and model the environment by a set of two-state
systems (fluctuators) that randomly switch between their
states. Their nonequilibrium dynamics can then be taken
into account explicitly as was done in the analysis of
coherent quantum transport in the presence of 1=f noise
[9]. Recent application of a similar approach to qubits
demonstrated new features in the decoherence that are
not reproduced in the Gaussian approximation [10].
Quantum aspects of non-Markovian kinetics were ad-
dressed in [11].

In the present Letter we extend the work [10] in two
directions. First, we evaluate explicitly the phase-memory
decay in the echo experiment. We find a pronounced non-
Gaussian behavior and explain plateaus observed in the
time dependence of echo signal [2]. Second, we consider
06=96(9)=097009(4)$23.00 09700
the case where the interaction strengths between the qubit
and fluctuators are broadly distributed. This distribution
strongly modifies the time dependence and smears away
the plateaus. We suggest a recipe for extracting the fluc-
tuators’ parameters from the measured echo signal.

It is worth noting that a broad distribution of fluctuators’
switching rates and the coupling strengths makes the prob-
lem similar to the conventional models of the spectral
diffusion in spin systems, structural glasses, and molecules
embedded in a condensed phase [12–17].

Model.—We assume that the qubit is a two-level system
(TLS) surrounded by fluctuators—systems with two lo-
cally stable states. Possible candidates for such fluctua-
tors in solid state devices are charge traps, see Fig. 1, or
structural dynamic defects. An occupied trap together with
9-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.96.097009


PRL 96, 097009 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
10 MARCH 2006
its charge image produces a dipole electric field fluctuating
in time due to hops between the trap and the gate and acting
upon the qubit. If the defects are not charged, they can
behave as elastic dipoles producing time-dependent strains
and interacting with the qubit via the deformational
potential.

A qubit coupled to the environment will be modeled by
the Hamiltonian ~H � ~H q�

~Hman�
~H qF�

~H F, where
~H q and ~H F describe the qubit and the fluctuators sepa-

rately. ~H q is the Hamiltonian of the qubit pseudospin� in
a static ‘‘magnetic field,’’ B � �Bx; Bz�. Here Bz character-
izes the splitting of the energies of the two states, and Bx
describes their tunneling coupling. This Hamiltonian can
be diagonalized by rotation in the pseudospin space with
new z axis parallel to B. The rotated Hamiltonian, H q, is

then H q � ��B=2��z.
~H F can be diagonalized by a

similar rotation in the fluctuator’s pseudospin space and
then split into three parts, H F �H �0�

F �H F�env �
H env. The first part is just a Hamiltonian of an isolated
two-level tunneling system, H �0�

F �
P
i�Ei=2��iz, where

the Pauli matrices ��i� correspond to ith fluctuator. The
spacing between the two levels, Ei, is formed by the
diagonal splitting, �i, and the tunneling overlap integral,
�i, as

Ei �
�������������������
�2
i ��2

i

q
� �i= sin�i: (1)

The interaction, H qF, between the qubit and the fluc-
tuators is specified as [cf. with Ref. [13] ]

H qF �
X
i

vi�z�
i
z; vi � u�ri� cos�i: (2)

Here we assumed for simplicity that the coupling strength
vi is determined only by �i defined by Eq. (1) and the
distance ri between the qubit and the ith fluctuator.

The interaction between the fluctuators and the environ-
ment manifests itself through time-dependent random
fields applied to the qubit. The frequencies of these fields
being much smaller than the temperature T and qubit
splitting B, the fields can be treated classically: �̂�i�z !
�i�t�. Accordingly, H qF is the Hamiltonian of the qubit
pseudospin in a random, time-dependent magnetic field
X�t� formed by independent contributions of surrounding
fluctuators:

H qF � X�t��z; X�t� �
X
i

vi�i�t�: (3)

The random functions �i�t� characterize the fluctuators’
state: �i�t� instantly switches between 	1=2 at random
times (random Poissonian process). Modeling the environ-
ment as a system of equilibrium bosons (phonons–-
electron-hole pairs), the switching rates, �i, can be
calculated in second order perturbation theory in the fluc-
tuator environment coupling [18,19],
09700
�i � �0�T�sin2�i: (4)

�0 is thus the maximal fluctuator switching rate at a given
temperature, T. For simplicity we assume here that the
fluctuator spends on average an equal time in each state.
Although justified only for Ei 
 T, this assumption pro-
duces correct temperature dependences [16].

The qubit is manipulated by applied ac ‘‘magnetic
field,’’ F�t� k x, with frequency close to B, so that Hman �
�1=2�F�t��x. The echolike manipulation allows substantial
suppression of the decoherence comparing to the ‘‘free-
induction’’ signal decay. We assume that the echo � pulse
is applied at time � and the signal detected at 2�. For details
on the echo procedure, see Ref. [2].

The external pulses are usually short enough for both
relaxation and spectral diffusion during each of the pulses
to be neglected. The echo decay is known to be propor-
tional to the ‘‘phase-memory functional’’ [20]

 � hei’�i�i ; ’� �
Z 2�

0
��t0; ��X�t0�dt0; (5)

where ��t0; �� � signum ��� t0�. The average is calcu-
lated over the realizations of the random processes �i�t�
and random initial states of fluctuators. This averaging
reflects the experimental procedure where the observable
signal is an accumulated result of numerous repetitions of
the same sequence of inputs. Equation (5) is obtained by
analysis of the qubit’s density matrix under the perturba-
tion Hman.

Single fluctuator.—Let us start analyzing Eq. (5) with
the case of a qubit interacting with a single fluctuator. In
the spirit of Ref. [16] we have obtained the exact solution
for the echo signal [21],

 �
e�2��

2�2

�
�1���e2�����1���e�2����

v2

2�2

�
; (6)

where � �
��������������������������
1� �v=2��2

p
. This result is essentially non-

Gaussian. Indeed, assuming that the phase, ’�, obeys the
Gaussian statistics one would get instead of Eq. (6)  G �
e�h’

2
�i=2 with

h’2
�i=2 � �v=4��2�4��� 3� 4e�2�� � e�4���: (7)

Comparing the two expressions we notice that the
Gaussian result (7) is the weak coupling limit, v
 2�,
of the exact solution (6). However, in the strong coupling
case, when v * 2�, the exact solution strongly differs
from Eq. (7). In Fig. 2 both functions are plotted for
different values of the ratio v=2�.

One can see that at v � 2� the Gaussian assumption
strongly underestimates the phase-memory functional for
� > 2�=v. Similar conclusion for the free-induction signal
has been recently obtained in Ref. [10]. The reason for the
failure of the Gaussian approximation in the strong cou-
pling case is similar to the well-known motional narrowing
of spectral lines [12]. Indeed, if v � 2�, then each fluctua-
tor splits the qubit’s levels rather than broadens them. The
9-2
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FIG. 2. Echo signal for different values of the ratio v=2�
(shown near the curves), Eq. (6). Dashed lines—calculations
along the Gaussian assumption, Eq. (7).
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qubit just experiences rare hops between these states; the
splitting is of the order of v and the typical hopping rate is
�. In contrast, at v
 � the splitting between the levels is
smeared, the typical decay rate of the echo signal being
�v2=�. This limit is reproduced within the Gaussian
assumption. At ��
 1, the phase-memory functional
behaves as

 
 1� �v2�3=3; (8)

regardless of the value of the ratio v=�. This result natu-
rally holds also in the Gaussian approximation. At ��� 1
we find

� ln 

�

2��; v > 2�;
v2�=4�; v
 2�:

At v > 2� there appear steps in the time dependence of the
echo signal shown in Fig. 2. This was experimentally
observed in Ref. [2] (see Fig. 3 there). At v� �;

���������
�=�

p
Eq. (6) acquires a simple form

 � e�2���1� �2�=v� sinv��: (9)

According to Eq. (9), the plateaulike features (d =d� 
 0)
occur at v� 
 2k� and their heights  
 e�4�k�=v expo-
nentially decay with the number k. These plateaus for �

v can be understood as follows. The probability for the
fluctuator to flip during the time 2�=v is very small, hence
it either does not flip at all or flips only once. If it flips
during the first half of the beating period, t < �=v, the
phase of the functional (5) at 2� � 2�=v evolves from 0 to
�. If it flips during the second half of the period, �=v <
t < 2�=v, the phase evolves from� to 2�. After averaging
the two contributions will cancel each other, which implies
that at � close to 2�=v the signal  is almost insensitive to
small variations of �.

Measuring experimentally the position and the height of
the first plateau, one can determine both the fluctuator
coupling strength v, and its switching rate �. For example,
the echo signal measured in Ref. [2] shows a plateaulike
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feature at � � 3:5 ns at the height  � 0:3, which yields
v 
 285 MHz, and � 
 27 MHz. If the fluctuator is a
charge trap near the gates producing a dipole electric field,
see Fig. 1, its coupling strength is v � e2�a � r�=r3.
Estimating the actual gate-qubit distance r 
 0:5 �m,
we obtain a reasonable estimate for the tunneling distance
between the charge trap and the gate, a� 20 �A.

Many fluctuators.—What if the qubit is coupled to many
fluctuators, which are not correlated: h�i�t��j�t0�i / 	ij?
The phase-memory functional is then a product of the
partial functionals due to individual fluctuators, � �Q
i 
�i�. Following the Holtsmark approach [12,16,21] we

approximate � as

� 
 exp��
X
i

�1�  �i���

� exp��
Z
d�dvP ��; v��1�  �i���:

Our approach [21] provides accurate description of the
decoherence by fluctuators with particular locations as
long as the number of active fluctuators is large.

We will show now that summation over many fluctuators
with a broad distribution of vi and �i may significantly
change the time dependence of the echo signal. Since the
tunneling splitting, �, depends exponentially on the dis-
tance in real space between the positions of the two-state
fluctuator, it is reasonable to assume that the distribution
function P ��;�� � 
=�. In terms of E and � it implies
P �E; �� � 
= sin�. Here 
 is proportional to the number
of fluctuators with E & T, which are not frozen at a given
temperature. Hence, 
 / T. From (4) it follows that
P ��; v� / ��1.

Because of existence of a finite maximal rate, �0, sum-
mation over fluctuators with different �i does not affect
much the decoherence at small times. Similar to Eq. (8) we
find that� ln� / �3 for �0�
 1. This asymptotic behav-
ior can, however, be modified due to a distribution of the
coupling strengths vi entering Eq. (2). Let us assume that
u�r� / r�2, which is the case if the fluctuators act as
electric dipoles. A uniform distribution of the fluctuators
over a two-dimensional gate surface corresponds to the
distribution of the coupling constants P �u� / u�2, which
coincides with the distribution of the coupling constants in
glasses, where two-level systems interact via dipole-dipole
interaction [13]. The phase-memory functional can be
evaluated by integrating the echo signal  , (6), where �
and v are related to u and � by Eqs. (2) and (4),

���� � exp
�
�u�

Z 1
0

du

u2

Z �=2

0

�1�  �u; �; ���d�
sin�

�
:

Here u� is the value of u�r� taken at the average distance
between the fluctuators having energy splitting & T. The
integration over u can be extended down to zero since �1�
 � / u2 at u! 0. The combination L � ���0=u�� ln�
turns out to be a universal function of the product �0�. At
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small time L 
 ��=4���0��
2. The stronger time depen-

dence compared to the single-fluctuator case, Eq. (8), is
due to strongly coupled fluctuators with large v. In the
general case, when u�r� / r�b, and the fluctuators are
uniformly distributed over an area of dimension d, one
finds L / �1�d=b for �0�
 1. Comparing the short-time
experimental dependence with this prediction one can
estimate the ratio d=b, i.e., extract information on the
spatial distribution of fluctuators and mechanism of their
interaction with the qubit. We observe that for any long-
range interaction the dependence of ln���� is superlinear.
Consequently, one cannot introduce T�1

2 as a decrement of
exponential decay of the echo signal, and the dephasing
time can be estimated only from the requirement
� ln���� 
 1. At �0�� 1 one obtains L / � [21].
Thus, for long times the dephasing time T2 can be intro-
duced in the conventional way. One should also keep in
mind that energy relaxation described by the characteristic
time T1 provides an additional exponential echo decay as
/ e�2�=T1 ; see [22]. This decay is usually small in the case
of longitudinal noise that we discuss, but can be added if
necessary.

In reality, the distribution over u should be cut off at
some umax corresponding to the minimal possible distance
between the fluctuator and the gate. Our selection of the
relevant fluctuators (see above) is valid provided that
umax=�0 � 1.

It is instructive to compare the dephasing induced by the
fluctuators with their contribution to the noise spectrum,
S�!� /

R
d�dvP ��; v�v2=�!2 � �2�. The distribution

P ��; v� / ��1 results in the 1=! spectrum. Thus many
fluctuators with a broad distribution of relaxation rates
produce 1=f noise. However, since the v dependence of
the quantity �1�  � generally significantly differs from v2

the phase-memory decay and 1=f noise are dominated by
different groups of fluctuators; see [21] for details.
Consequently, in the general case the fluctuator-induced
decoherence cannot be expressed through the noise spec-
trum. This is in contrast to the statements that often appear
in the literature. Non-Gaussian effects due to a single or
many fluctuators may be responsible for the experimen-
tally observed decoherence [2,23].

In conclusion, the presented results can be used to probe
the sources of qubit decoherence by measuring time de-
pendence of the echo signal. Plateaus in this dependence
signal that a major contribution comes from a single fluc-
tuator, the parameters of which can be extracted from the
position and height of the plateaus using Eq. (9). A smooth
time dependence of ln� suggests a combined effect of
many fluctuators. These conclusions are qualitatively cor-
rect also for the ‘‘free-induction’’ signal.
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