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Pattern Stabilization through Parameter Alternation in a Nonlinear Optical System
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We report the first experimental realization of pattern formation in a spatially extended nonlinear
system when the system is alternated between two states, neither of which exhibits patterning. Dynamical
equations modeling the system are used for both numerical simulations and a weakly nonlinear analysis of
the patterned states. The simulations show excellent agreement with the experiment. The nonlinear
analysis provides an explanation of the patterning under alternation and accurately predicts both the
observed dependence of the patterning on the frequency of alternation and the measured spatial
frequencies of the patterns.

DOI: 10.1103/PhysRevLett.96.094101 PACS numbers: 47.54.�r, 05.45.�a, 42.65.Sf
FIG. 1. Schematic of the experiment. The focal length of the
lenses L1 and L2 is f � 25 cm. The distances d1 and d2 are 20
and 15 cm, respectively, leading to an effective propagation
length of �15 cm and, thus, a self-focusing nonlinearity [6].
BS1, BS2: beam splitters; P: polarizer; P1: pinhole; HWP: half-
wave plate; AOM: acousto-optic modulator. Inset: Phase re-
sponse of the LCLV as a function of write light intensity and
no feedback. The solid points show the experimental data, while
the line is 10:5 tanh�2:5I�, where I is the intensity.
Recent theoretical and numerical studies have drawn
attention to the patterns that can arise when spatially ex-
tended nonlinear systems are driven by a global periodic
modulation of the system parameters [1–3]. In Ref. [2], a
Turing-type reaction-diffusion system is shown to form
patterns due to short-time instabilities, a mechanism that
is applicable only to multifield systems. In Ref. [3], the
single-field Swift-Hohenberg model is investigated as the
system is switched between two values of a parameter,
each of which individually leads to a homogeneous state
under steady state conditions. In this case, the mechanism
derives from an effective averaging of otherwise mono-
stable potentials to produce a bistable potential under
which patterning occurs.

In this Letter, we report the first experimental observa-
tion of pattern stabilization in a nonlinear system when one
of the control parameters is alternated between two values,
neither of which individually leads to a patterned state. The
pattern forming mechanism is related to the Swift-
Hohenberg model described in Ref. [3] but, as will be
discussed below, has several fundamental differences.

The experimental arrangement we use is that of a liquid
crystal light valve (LCLV) placed in an optical feedback
loop. This system exhibits a wide range of spatiotemporal
behavior, and a comprehensive review can be found in
Ref. [4]. The LCLV is an optoelectronic device composed
of thin layers of liquid crystal and amorphous silicon
across which is placed an alternating voltage. Light of
spatially varying intensity incident on the amorphous sili-
con (‘‘write’’) side of the device causes a spatially variant
phase modulation of the light which reflects from the liquid
crystal (‘‘read’’) side of the device [5].

The function f�I� that relates the change in phase of the
read light to the intensity of light at the write side of the
LCLV depends on the voltage and frequency used to drive
the device. For an 8 V amplitude, zero offset, 3 kHz drive,
the measured phase response is shown in the inset in Fig. 1.
This phase response is fitted by the equation

f�I� � 10:5 tanh�2:5I� (1)
06=96(9)=094101(4)$23.00 09410
and is also plotted. The phase retardation at zero input
intensity was determined to be �o � � rad.

The experimental setup is shown in Fig. 1. Linearly
polarized light from an argon ion laser (� � 514 nm)
was intensity modulated by using the first diffraction order
from an acousto-optic modulator. The polarization orien-
tation of the light was set by the half-wave plate and, after
spatial filtering, the beam was allowed to fall on the liquid
crystal side of the LCLV. Upon reflection, the beam was
routed via lenses L1, L2, and the imaging fiber bundle onto
the amorphous silicon side of the LCLV. The various
distances between the optical components are as shown
in the figure caption and lead to an overall self-focusing
nonlinearity [6]. For the measurements reported below, the
incoming light was polarized at 45� to the liquid crystal
director and the polarizer (P) set with its transmission axis
also at 45�. The pinhole P1 was adjusted to admit only the
first two critical q vectors of the spatial instability. With
these settings, one can find many different spatiotemporal
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FIG. 2. Output from the experiment. (a) and (b) show the
homogeneous states obtained for an input intensity to the back
of the LCLVof 3.9 and 0:1 mW=cm2, respectively. (c) shows the
output obtained with a constant intensity input of 2 mW=cm2.
(d)–(h) show the output obtained with the input irradiance
switching between 3.9 and 0:1 mW=cm2. The modulation fre-
quencies are (d) 2 (image obtained when the intensity goes high),
(e) 6, (f) 14, (g) 20, and (h) 200 Hz.
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behaviors including chaotic patterning and localized struc-
tures, depending on the input light intensity [5].

In this setup, the equation governing the evolution of the
phase response of the LCLVas a function of the input light
is given by [6]

�
@��~r;t�
@t

����� ~r;t���o�� l2dr
2
?�� ~r;t��f�Ifb�; (2)

where � is the relaxation time of the device (in this case,
about 30 ms), �o is the constant-phase retardation of the
LCLV with no write light, ld is the (transverse) diffusion
length of the LCLV (about 50 �m), and the function f
relates the phase modulation induced in the liquid crystal
to the light that is fed back on the LCLV [Eq. (1)] with
intensity Ifb. With a polarizer inserted in the optical loop,
the feedback intensity is given by

Ifb � Io
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where Io is the input intensity of the laser beam, L is the
free-space propagation length in the feedback loop, and
ko � 2�=�. B � cos��1� cos��2� and C � sin��1� sin��2�,
where �1 and �2 are the respective angles between the input
light polarization and the polarizer transmission axis with
the liquid crystal director.

To explore the effect of alternation, the input light
intensity to the system was switched between high and
low values at unit mark-space ratio. Depending on the
values of the high and low intensities and the frequency
of modulation, a number of effects could be observed on
the formation of patterns. One of the most interesting,
which we will focus on in this Letter, was observed when
the light intensity was modulated between 3.9 and
0:1 mW=cm2. (This was measured at the write side of
the LCLV. All power measurements reported here have
an uncertainty of about 5%). At constant intensities of
3.9 or 0:1 mW=cm2, the output of the system was homo-
geneous [as shown in Figs. 2(a) and 2(b)]. At intermediate
constant intensities, we observed formation of irregular
rolls and the appearance of bright regions at intensities
above �2 mW=cm2 [Fig. 2(c)]. The patterns had spatial
frequencies corresponding to q̂2 from about 1.5 to 4 where
we define the nondimensional spatial frequency as q̂ �������������������
Lq2=2k0

p
, with q the wave vector of the pattern. The

bright regions grow as the intensity increases, and above
�3 mW=cm2 the system settles into the homogeneous
bright state.

When a periodic modulation was applied to the input
light intensity at a frequency of some 6–20 Hz (periods
comparable to the relaxation time of the device), hexagonal
patterning was seen. When the modulation is slow enough
(<2 Hz), then the system alternates between the two ho-
mogenous states, and Fig. 2(d) shows the system output
when the intensity is high. At 14 Hz [Fig. 2(f)], the
strongest hexagonal patterning occurred, as judged by
eye on the CCD monitor. These hexagons had q̂2 � 2:8�
09410
0:2. As the alternation frequency was raised beyond some
20 Hz [Fig. 2(g)], the pattern became more disordered and
showed rolls as well as hexagons. At frequencies beyond a
hundred hertz [Fig. 2(h)], the pattern was similar to that
seen with constant intensity input set at the mean value of
the alternation intensities (2 mW=cm2).

The behavior of the optical system was simulated by
numerically integrating Eq. (2). The simulations are in
good quantitative agreement with the experimental results.
In particular, they show that there is a narrow range of
alternation frequencies of order 10 Hz for which there is
stable hexagonal pattern formation. At 14 Hz, q̂2 � 2:9�
0:2. Outside of this frequency range, there is either alter-
nation between homogeneous states at lower frequencies
or the formation of irregular patterning at higher
frequencies.

Insight into the system can be gained by considering the
homogeneous solution of Eq. (2). The fixed points �	 for
the homogeneous solution as a function of input intensity
I0 are shown in Fig. 3. A combination of a linear stability
analysis and simulation show that a homogeneous stable
state exists for I0 < 0:2 mW=cm2 with �	 � � and for
I0 > 3 mW=cm2 with �	 � �� 10:5. These results are
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consistent with the dark and bright states observed for the
lower (<0:11 mW=cm2) and upper (>3 mW=cm2) inten-
sities, respectively. In the intermediate range of intensities,
the patterns observed in experiment and from simulations
are also indicated in Fig. 3.

Simulations show that the observed patterning (for both
fixed and alternating intensities) takes place about the
middle branch of Fig. 3. To mathematically analyze the
behavior of these patterns, we apply a patterned perturba-
tion about the fixed point and expand the phase response
equation to third order, following the basic scheme of
Ref. [7]. Three Ginzburg-Landau–type mode amplitude
equations are derived with coefficients obtained using the
computer package MAPLE. These are too long to show here.
The implicit time dependence of the coefficients [through
their dependence on��t�] plays an important role in study-
ing the behavior under alternation of intensity.

The results of a stability analysis of these amplitude
equations are summarized in the state diagram in Fig. 4
where the horizontal axis shows the stable fixed point
phases that correspond to a given input light intensity,
also shown in the figure. From the diagram, one can see
that there are no stable hexagons with q̂2 � 3 at either the
high intensity of 3:9 mW=cm2 (corresponding to a phase
of 8.9 rad) or at the low intensity of 0:11 mW=cm2 (cor-
responding to 5.6 rad, where the middle branch appears).
The diagram indicates that, at intermediate fixed inten-
sities, hexagons with q̂2 � 3 could be stable, though we
find in actuality that the system selects irregular roll pat-
terns at the lower value q̂2 
 2.

At higher intensities (>3 mW=cm2), both patterned and
homogeneous states are possible, but the system eventually
settles into the homogeneous bright state. This can be
understood analytically by the fact that, even though they
are negative, the eigenvalues for stabilization against per-
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FIG. 3. Homogeneous steady state phase as a function of input
intensity for the LCLV feedback system with both the input
polarization and the output polarizer oriented at 45�. Also
indicated are the types of patterns seen in the experiment and
in computer simulations under constant intensity illumination.
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turbations away from roll and hexagon states approach
zero as I0 is increased, while the corresponding negative
eigenvalue for the homogeneous state remains finite.

To study the effects of alternation of the input intensity,
we numerically integrated the amplitude equations, taking
into account that the homogeneous phase moves along the
middle branch. First, we imposed small amplitude hexago-
nal or roll patterns about the phase corresponding to the
high intensity and then computed the amplitudes of the
patterns as a function of time after the intensity was set to
0:1 mW=cm2. Then we imposed small amplitude hexago-
nal or roll patterns about the phase corresponding to the
low intensity, set the intensity to 3:9 mW=cm2, and again
computed the amplitudes of the patterns as a function of
time. The results of these calculations for hexagons are
shown in Fig. 5 for times up to the relaxation time �
(corresponding to the duration of high and low intensities
at frequencies producing strong patterning). Rolls lead to
very similar results and are not shown. Consider first when
the intensity is switched from low to high [Fig. 5(a)]. For
both hexagons and rolls, the amplitudes for all values of q̂2

decrease when the time t < �=2. This is then followed by a
rapid increase in amplitude for 2 � q̂2 � 4 and decay for
other values of q̂2. We note that the fastest growing mode is
around q̂2 � 2:7. Figure 5(b) shows the case when the
intensity switches from high to low. In this case, for both
hexagons and rolls, the modes corresponding to 2 � q̂2 �
3 increase, with the largest rate also around q̂2 � 2:7 for
t < 0:8�. For all the other values of q̂2, there is a decrease
in the amplitudes. These results agree well with computer
simulations of the system. We would thus expect that, as
the intensity is switched up and down with a period of order
2�, the patterns with q̂2 � 3 will dominate, as we observe.

In order to explain the selection of hexagons over rolls,
we refer to calculations leading to the state map (Fig. 4).
Using our simulations, we first note that, at the optimum
hexagons and rolls

rolls

no patterns 

rolls 

hexagons

0.2 0.5 1.0 1.5 4.0 I=0.11 mW/cm2

FIG. 4 (color online). State map showing the regions of ex-
istence of stable patterns of rolls and hexagons as a function of
spatial frequency and phase. The range of phase from about 5.5
to 9.4 is along the middle stable branch of Fig. 3. The corre-
sponding intensities are also indicated on the diagram. We did
not find any stable mixed states.
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FIG. 5. Amplitudes of hexagons vs time (a) after the intensity
is switched from 0.1 to 3:9 mW=cm2 and (b) after the intensity is
switched from 3.9 to 0:1 mW=cm2. The spatial frequencies
correspond to q̂2 � 1 (�), 2 (�), 2.7 (�), 3 (*), 4 (�), and 5
(�). Symbols are to guide the eye and do not represent time
steps. The amplitudes of the rolls show very similar behavior.
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frequency of alternation, the homogeneous phase varies
between 6.5 and 9 radians. As can be seen from Fig. 4, in
the upper regime (around a phase of 9 radians), rolls with
2 � q̂2 � 3 are stable. In this range, although static solu-
tions for hexagons exist, they are unstable to small pertur-
bations. However, both the negative eigenvalues for rolls
and the positive eigenvalues for hexagons are very small,
indicating a slow growth or decay of the instabilities. In the
lower regime (around a phase of 6.5 radians), hexagons
with 2 � q̂2 � 3 are stable. Roll solutions with 2:7< q̂2 �
3 do not exist, and for 2 � q̂2 � 2:7 they have very large
positive eigenvalues, indicating a rapid growth of instabil-
ities. Therefore, we would expect hexagons to be strongly
favored over rolls in the lower regime, while in the higher
regime, although the hexagons are unstable, the growth
rate of the instability is small enough to limit pattern decay.

A plausible qualitative mechanism for our observations
of hexagonal patterning can be summarized as follows. In
the high intensity regime the low spatial frequency modes
are suppressed due to their fast decay, while in the low
intensity regime the high spatial frequency modes are sup-
pressed for the same reason. Then the time of alternation is
long enough to permit the growth of the intermediate
spatial frequencies but short enough to prevent the devel-
opment of either homogeneous state. Finally, in this par-
ticular case, hexagons are selected over rolls due to the
greater instability of rolls at the low intensity.

In conclusion, we have presented an experimental real-
ization of an extended nonlinear dynamical system that
09410
exhibits pattern formation as the result of alternation be-
tween two different homogeneous states. We can explain
our observations on the basis of a weakly nonlinear analy-
sis of the system which agrees quantitatively with both
experiment and computer simulations. When considering
this work in comparison with previous studies, it seems
that the nonlinear optical system most closely resembles
that of Ref. [3] in the sense that the governing equations
exhibit type Is instability [8], though the coupling is very
different from Swift-Hohenberg. It is also of interest to
note that, at the high intensity, the optical system is not
truly monostable (see Fig. 3). Rather, the bright state is
always selected because of the very weak stability of the
other fixed points. Phenomenologically, the optical system
is also different. In the alternated Swift-Hohenberg model,
when the alternation frequency is very large an effective
(i.e., just a pure average of each dynamic) bistable poten-
tial is achieved and patterning is observed. When the
alternation frequency is reduced and is comparable to the
relaxation time, the same patterns are observed (although
they are oscillating). This does not occur in the optical
system. When the switching is much faster than the inter-
nal relaxation time, the irregular patterns obtained corre-
spond (trivially) to those obtained with the average
parameter value. However, as the frequency is reduced,
strong hexagonal patterning appears which cannot be ob-
tained with any single steady value of the parameter.
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