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Nonadiabatic Dynamics of the Electromagnetic Field and Charge Carriers
in High-Q Photonic Crystal Resonators
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We address, both experimentally and theoretically, phase and amplitude dynamics of the electromag-
netic field in a two-dimensional photonic crystal when femtosecond pulses are injected. We demonstrate
that the usual adiabatic approximation underlying the dynamics of field and carriers in a semiconductor
resonator is no longer valid, since in general the photon lifetime cannot be neglected with respect to the
carrier recombination lifetime. Parameter regions where adiabaticity is broken are shown, and the ubiquity
of the observed dynamical scenario in the new generation of active photonic microresonators is predicted.
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FIG. 1. Electric field (solid line), second order phase (dashed
line), and carriers dynamics (solid line with shadow) for typical
pump and probe delay. The shadow represents that the medium is
active. Traces correspond to Eqs. (3) and (4) with N0 � 0:5 and
� � 0:02.
One of the most interesting features of photonic crystals
(PCs) is their versatility to host microresonators with ex-
tremely high quality (high-Q) factors [1]. This, combined
with active materials, for instance, semiconductors, opens
innovative ways to control light [enhancing light-matter
interaction [2], stopping and storage of light [3], quan-
tum information processing [4], etc.] leading to a large
variety of applications towards fully integrated optical
devices [5–7].

In such active resonators, the electromagnetic field dy-
namics depends on two time scales. The first one is the
time scale for the electromagnetic field development in the
cavity (�E) that ranges from few (in our two-dimensional
—2D— PC) to several tens of picoseconds [in recent
2DPC microcavities [1] ] in high-Q systems. The second
one is the material response time, i.e., the electron-hole
recombination time (�r) in the semiconductor. In 2DPC, �r
is strongly reduced mainly due to nonradiative recombina-
tion at the semiconductor/air etched interfaces. The ratio
between these two time scales dramatically influences the
dynamics. For well-known semiconductor microcavities
such as vertical cavity surface emitting lasers, �E remains
typically 3 orders of magnitude below �r; under short
optical excitations, this results in a dynamical response
which is characterized as the carriers being ‘‘frozen’’ dur-
ing �E, known as the adiabatic regime. In contrast, in
current PCs, �E gets closer and closer to �r, meaning that
the field time scale is no longer negligible with respect to
the carrier time scale. Fast carrier dynamics is then ex-
pected to modify the phase and amplitude of the electro-
magnetic field.

In this Letter we show, using femtosecond pump and
probe experiments, that the dynamics of light-matter
interaction in photonic crystal microresonators is gov-
erned by a subtle interplay between the carrier dynamics
and the traveling photons in the early stages after the
pumping pulse arrival. This breaks down the adiabatic
regime that typically holds in other standard semiconduc-
tor microcavities.
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Let us represent an ideal situation where the optical
electrical field E � Re �E�t� exp��i!ct�� in a resonator,
where E is the amplitude and !c the central frequency of
the resonance (the reference frequency), is turned on by a
short probe pulse. The latter is short enough to be consid-
ered as an optical kick excitation. The field-amplitude
relaxation is much slower, considered exponential, with
decay time equal to 2�p (see Fig. 1). As the pump arrives,
for example, after the probe, a carrier population is created,
also in an instantaneous fashion. Now the cavity resonance
is shifted since the refraction index has changed, becoming
detuned with respect to !c [8]. As a result, Re �E� oscil-
lates. In addition, the frequency of the oscillation varies
because of carriers relaxation. Our goal is to show that this
simple picture can capture the essence of the dynamical
processes in active 2DPCs under short-pulse excitation.

The experiments were carried out in a 2D PC 237 nm-
thick InP slab with a graphite lattice of air holes
[lattice constant � 770 nm, see [8] for details], incorpo-
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rating four quantum wells emitting at 1450 nm. The 2DPC
was designed in order to exhibit a flat photonic band edge
at the � point (normal incidence) around 1540 nm, which is
largely detuned from maximum of absorption. The con-
sequently low group velocity mode behaves as high-Q 2D
‘‘in-plane resonator,’’ confining the photons in the slab.
The resulting optical resonance has a FWHM of 0.54 nm,
giving a quality factor of Q � 2860 and photon lifetime of
�p � 2:3 ps.

The sample is explored via time-resolved pump and
probe spectroscopy using 120 fs pulses at 810 nm for the
pump, and around 1550 nm for the probe. Both beams
are normally incident and spatially overlapped onto the
sample. They are focused down through an achromatic
microscope objective to spot diameters of 10 �m and
5 �m for pump and probe, respectively. The probe is
linearly polarized in the �K direction of the reciprocal
lattice, which was found to optimize the coupling of the
probe field into the resonance. The spectral width of the
probe pulses is 25 nm allowing to obtain a complete
spectrum without varying the central wavelength. The
pumping pulse is mainly absorbed in the quantum barriers,
i.e., incoherently with respect to electron-hole recombina-
tion transitions or photonic resonances. The relative de-
lay between pump and probe pulses is defined as t0�
�t=2�p��tpump� tprobe�=2�p.
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FIG. 2. Experimental optical spectra. Pumping levels are N0 �
0:3 in (a), 0.6 in (b), and 0.9 in (c). Each curve corresponds to a
pump-probe delay; positive delays mean pump arriving after the
probe. Normalized delays are: (a) t0 � 4:4; 1:8; 1:36; 0:78;
0:56; 0:19;�0:67;�26; (b) t0 � 4:4; 2:17; 0:78; 0:63; 0:4; 0:28;
0:06;�0:3;�0:74; (c) t0 � 4:4; 2:1;�0:09 (also in the inset),
�0:15;�11:5;�26:7 from the front curve to the back curve.
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In Fig. 2 we show optical spectra of the probe reflection
on the sample for three pumping levels: 0.4, 0.8, and
1.3 mW, corresponding to N0 � 0:3, 0.6, and 0.9 respec-
tively (N0 is pumping intensity normalized to laser inten-
sity threshold, hIp;thi � 4:58 kW=cm2). Several pump-
probe delays are set for each pumping level; curves in
the front (t0 > 0) correspond to probe pulse anticipating
pump pulse, while curves in the back (t0 < 0) correspond
to pump pulse anticipating probe pulse.

Two kinds of spectral oscillations can be distinguished:
we call ‘‘type 1’’ oscillations those of Figs. 2(a) and 2(b)
occurring for pump arriving after the probe pulse (t0 > 0).
Their spectral period changes with the delay, becoming
shorter for large t0. The second type of oscillations, that we
call ‘‘type 2,’’ are fast oscillations and occur close to the
laser threshold around t0 � 0 [Fig. 2(c), see inset for the
curve t0 � �0:09 alone].

The main approximation in our theoretical approach is
to associate the observed resonance with a longitudinal
mode of a Fabry-Perot-like resonator filled with a semi-
conductor medium, which allows us to dramatically sim-
plify the description. The model can be derived from the
Maxwell-Bloch equations, in the rotating wave and slowly
varying approximations with adiabatic elimination of the
polarization, and finally performing the mean field limit.
The first two ones are standard approximations in many
problems of nonlinear optics, and the latter is justified
since: (i) the system is single mode, i.e., only one photonic
mode is present inside the injection pulse spectrum [9], and
(ii) the cavity has a large Q factor. The equations for the
electric field amplitude E and the carriers population N
read, in their adimensional form [10],

@E
@t
� �E� �i�� 1�NE (1)

@N
@t
� ���N � �N � Nt�jEj2�; (2)

with initial conditions E�t � 0� � E0 /
����������������
hIIi=Isat

p
and

N�t � t0� � N0 � hIpi=hIp;thi, where II is the injection
(probe) intensity and Isat is the saturation intensity. Note
that both pumping and probing are approximated to give
kicklike responses in carriers and field, respectively, due to
the fact that the input pulse duration is much shorter than
both the carriers relaxation time (�r) and photon lifetime.
Normalizations are such that jEj2 � I=Isat, where I is the
circulating intensity in the resonator; N is carriers density
normalized to that at laser threshold; time is normalized to
2�p. The parameter � is the ratio between the real and the
imaginary parts of the differential susceptibility at the cen-
tral frequency of the optical resonance [11]; � � 2�p=�r;
Nt is the normalized carriers density at transparency.

Let us first consider the pump pulse arriving at t0 � 0;
Eq. (1) can be straightforwardly integrated and gives
E�t� � E0 exp��t� �1� i��

R
t
0 N���d��. As long as
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jE0j
2 	 1 and N0 
 1,

R
t
0 N���d� can be approximated by

N0�1� �t=2�t inside the exponential, since for small �
(here we consider � � 0:02), it results �t	 1 where E�t�
does not vanish.

The solution of (1) and (2) is thus E�t� � A�t��
exp�i��t��, with

A�t�’E0 exp
�
�
�N0

2

�
t�
�1�N0�

N0�

�
2
�
�1�N0�

2

2N0�

�
(3)

��t� ’ ��N0

�
1�

�t
2

�
t: (4)

We first define the adiabatic limit, valid when j��2��t�j �
jd2�=dt2jt2=2	 �, then t	

����������������������
2�=�N0�

p
� ta. The

phase becomes ��t� � ��1��t� � ��t, where � � �N0

is the pump-induced frequency shift. The decay time of the
field amplitude �tE for arbitrary N0 
 1 can be easily
derived from Eq. (3). The condition for the adiabatic
regime to be valid becomes �tE 	 ta. The adiabatic con-
dition is fully verified for N0 � 0:3, and marginally for
N0 � 0:6. This is illustrated in Fig. 1: for N0 � 0:5,
��2�=� < 1 during the field decay, meaning that the adia-
batic approximation is valid. In contrast, for values of
N0 * 0:8, ��2�=� reaches unity before the field has fallen
to 1=e of its maximum. ‘‘Type 1’’ oscillations observed in
the experimental spectra are captured by the adiabatic limit
when the pump arrives after the probe. The electric field
dynamics for t0 � 0 can be written in a compact form
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FIG. 3. Theoretical optical spectra. (a) N0 � 0:3 and
(b) N0 � 0:6 are calculated from Eq. (6); (c) N0 � 0:9 is the
power spectrum of Eq. (5) with (3) and (4). Normalized delays
are the same as the experimental ones. Inset: t0 � 0.
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E�t; t0� � ��t���t0� t�E0 exp��t�

� ��t� t0�A�t� t0�exp��t0� i��t� t0��; (5)

where ��t� is the Heaviside function. For N0 � 0:3 the
adiabatic limit yields � � ��1� and A�t� � E0 exp��t�1�
N0�� [12]. The optical spectrum is the power spectrum of
(5):

jÊ�!;t0�=E0j
2�
j1�e��1�i!�t0 j2

1�!2 �
e�2t0

D�!�
�

2e�t0

�1�!2�D�!�

�f��1�N0��!�!�����e�t0�cos!t0�

����N0!�sin!t0g; (6)

where D�!� � �1� N0�
2 � �!���2. The first term of

Eq. (6) is related to the linear resonance. The second term
is related to the nonlinear resonance, centered at ! � �,
and its linewidth is narrowed by a factor 1� N0. The third
term of Eq. (6) is the (spectral) interference between the
linear and nonlinear parts of the Fourier transform, giving
‘‘type 1’’ oscillating components of frequency t0, and
spectral period �	T1 � t�1

0 . Spectra for N0 � 0:3 and 0.6
with different t0 using Eq. (6) are shown in Fig. 3(a). We
point out that these oscillations lead to an in situ measure-
ment of the pump and probe delay.

We now focus on the origin of ‘‘type 2’’ oscillations.
These take place for N0 * 0:6, where the adiabatic ap-
proximation is no longer valid. We will first analyze the
case t0 � 0, for which the Fourier transform of the field,
Ê�!; 0� �

R
1
0 E0e��pt

2�2qt�dt, gives

Ê�!; 0� �
E0

2

����
�
p

s
eq

2=p erfc �q=
����
p
p
�; (7)

where p � �N0�1� i��=2, q � �1� N0 � i���!��=2,
and erfc is the (complex) complementary error function. In
the inset of Fig. 3(c) we represent jÊ�!; 0�j2 as a function
of !. Fast oscillations are observed at the red side of the
spectrum: we identify them as ‘‘type 2’’ oscillations. It is
possible to trace back their origin from Eq. (7). The square
modulus of the error function has the following dominant
oscillating term:� cos�f�!��, f�!� � ��1� N0�

2 � ���
!�2�=�2���; the dependency on the square frequency
corresponds to that observed in the experimental results
[see inset of Fig. 2(c)]. The maxima are given by f�!m� �
�2m� 1��, and the first one, !0, indicates the position of
the main spectral peak. The spectral period between the
first two secondary maxima (m � 1 and 2) gives �	T2 

0:2

�������������
�N0�
p

. The physical origin of the type 2 oscillations is
thus elucidated: it results from the strong asymmetry of the
output field originated from the kicklike stimulus followed
by the slow relaxation, together with the frequency chirp
due to spontaneous recombination during the cavity field
decay. The chirp becomes significant when the system is
pumped close to the laser threshold, where the output pulse
gets longer. Information on the carriers dynamics (�) can
1-3
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FIG. 4 (color online). Parameters map for (a) � � 0:02 and
(b) � � 1, showing regions where type 2 oscillations are visible
(dark regions), and those where they disappear (light regions).
Dark lines correspond to contour plots of r defined in the text.
White line is ��2� � � (�tE � ta); well below this line means
��2� 	 �, then the adiabatic approximation becomes valid.
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readily be obtained from the spectral period, and gives � 

0:02, which yields �r 
 240 ps. This is comparable to
previous measurements varying pump and probe delay [7].

For arbitrary t0, the electric field is given by Eqs. (5), (3),
and (4). Spectra for different t0 and N0 � 0:9 are repre-
sented in Fig. 3(c). The agreement with the experimental
results is remarkable. Slight differences, for example, in
the amplitude of type 2 oscillations, might be reduced by
taking into account further effects, such as the dependence
of �r and � on carrier density.

A criterion for the presence of ‘‘type 2’’ oscillations is
r�jerf �p1=

���
q
p
��erf �Re�p1=

���
q
p
��j�1, where �p1; q1� �

�p; q�j!1
. If r� 1 or r	 1 then no oscillations are

present in the power spectra. In Fig. 4 we show a two-
dimensional plot of the isolines of r. Oscillations are
visible in dark regions, while in light regions no oscilla-
tions are observed since r > 20. The minimum value for r
is r� 0:25 on the top of the figure, meaning that the limit
r	 1 is never reached: the oscillations only disappear
through the r� 1 side. In other words, oscillations are
always visible close to laser threshold. This is consistent
with the experimental observations. In addition, we find
that the isoline r � 1 is very close to the adiabatic limit
ta � �tE [see white line in Fig. 4(a)]. In consequence, the
nonadiabatic dynamics is a necessary and sufficient con-
dition for the occurrence of oscillations. In Fig. 4(b) we
show the region of type 2 oscillations for � � 1, which is
an extrapolation for extremely high-Q systems; the non-
adiabatic regime clearly spreads all over the parameter
space, thus becoming ubiquitous.

In conclusion, femtosecond pump and probe of a semi-
conductor 2DPC for j�tj & �p gives a handle to the am-
plitude and phase field dynamics. The richness of the
spectral response obtained under such conditions is well
captured by a simple mean field dynamical model of the
nonlinear resonator. The phase modulation is translated
into spectral oscillations allowing a direct access to several
important parameters (�, �r, t0). Let us stress that fast
(type 2) oscillations are the signature of nonadiabatic
dynamics, and result from a combination of both the
09390
asymmetric character of the field which develops inside
the cavity after a short-pulse injection, and the frequency
chirp due to carriers dynamics.

The concepts developed here constitute a framework to
study field and carrier dynamics beyond the adiabatic limit.
They are applicable to all active resonators provided that
their normalized parameters (time-scales ratio, pumping
rate, and chirp factor) fall into the parameter region pre-
sented here. Importantly, in the microscale, semiconductor
PCs inherently exhibit nonadiabatic dynamics due to the
closeness of the field and material relaxation time con-
stants, a natural trend in the world of high-Q active micro-
resonators that should be taken into account for future
applications. In particular, in the context of slow light [3]
and chirp management, nonadiabatic dynamics might be
used to design or compensate frequency chirps originating
from the interaction of short pulses with active high-Q
optical resonances.
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