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Equilibrium Free Energies from Nonequilibrium Metadynamics
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c/o USI Campus, Via Buffi 13, CH-6900 Lugano, Switzerland
(Received 5 October 2005; published 7 March 2006)
0031-9007=
In this Letter we propose a new formalism to map history-dependent metadynamics in a Markovian
process. We apply this formalism to model Langevin dynamics and determine the equilibrium distribution
of a collection of simulations. We demonstrate that the reconstructed free energy is an unbiased estimate
of the underlying free energy and analytically derive an expression for the error. The present results can be
applied to other history-dependent stochastic processes, such as Wang-Landau sampling.
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In recent years increasing attention has been paid to the
possibility of studying equilibrium thermodynamical pro-
cesses by means of nonequilibrium processes [1–5]. A
major breakthrough in this field is the work of Jarzynski
[2], who has demonstrated that it is possible to estimate the
free energy difference between two states as a suitable
average of the work done on the system by forcing the
transition in a finite time.

More recently, two of us have introduced, on a more
empirical basis, the metadynamics method [6] in which the
free energy as a function of one or more collective varia-
bles (CVs) is obtained from a nonequilibrium simulation.
In this method, the dynamics of a system at finite tempera-
ture is biased by a history-dependent potential constructed
as the sum of Gaussians centered on the trajectory of the
CVs. After a transient period, the free energy dependence
on the CVs can be estimated as the negative of the bias
potential. This method is closely related to the local ele-
vation method [7], to coarse molecular dynamics [8,9] and
to the adaptive-force bias method [10]. Moreover, as de-
scribed in Ref. [11], metadynamics can be viewed as a
finite temperature extension of the Wang-Landau approach
[12], where the density of states of a system is estimated by
a Monte Carlo procedure in which the acceptance proba-
bility of a move is modified every time a configuration is
explored. The practical validity of the metadynamics
method has been demonstrated in a number of applications
to real problems [6,11,13–20], and an empirical way to
evaluate the error has been suggested in Ref. [21].
Attempts at a more formal approach have so far been
frustrated by the lack of a formalism capable of handling
a non-Markovian process [22].

The problem of working with history-dependent dynam-
ics is that the forces (or the transition probabilities) on the
system depend explicitly on its history. Hence it is not
a priori clear if, and in which sense, the system can reach
a stationary state under the action of these dynamics. In this
Letter we introduce a formalism that allows us to demon-
strate that this is indeed the case, at least when the evolu-
tion of the system is of the Langevin type. We introduce a
novel mapping of the history-dependent evolution into a
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Markovian process in the original variable and in an aux-
iliary field that keeps track of the configurations visited.
Using this mapping we are able to validate rigorously the
metadynamics method. In particular, we show that the
average over several independent simulations of the meta-
dynamics biasing potential is exactly equal to minus the
free energy, and we obtain an explicit expression for the
standard deviation of the single realization from this aver-
age. The same formalism can be extended to Monte Carlo–
like samplings such as Wang-Landau and, more generally,
to all stochastic processes augmented by a history-
dependent term which is an explicit function of the system
trajectory.

We will here consider the evolution of the CVs in the
framework of stochastic differential equations. Dimen-
sional reduction [23,24] leads in general to a process
with a complex memory friction and an inertial term.
However, we have extensively checked [21,25] that in
real systems the quantitative behavior of metadynamics
is perfectly reproduced by the Langevin equation in its
strong friction limit. This is due to the fact that in real
systems all the relaxation times are usually much smaller
than the typical diffusion time in the CVs’ space, and are
therefore averaged out during a metadynamics reconstruc-
tion. Hence, we model the CVs’ evolution as a Langevin-
type dynamics. For this dynamics it is possible to solve
analytically the equilibrium distribution of the system.

Under this assumption the metadynamics equation in the
CVs s of a system with free energy F�s� becomes

ds � �D
@
@s

�
F�s� �

Z t

0
dt0g�s; s�t0��

���������s�s�t�
dt

�
�������
2D
p

dW; (1)

where dW is a Wiener noise, D is the diffusion coefficient,
and we measure the energies in units of temperature. The
variable s is in general multidimensional, and @=@s indi-
cates a vector derivative in the multidimensional space of
the CVs. The integral in Eq. (1) is the history-dependent
potential, generated through the kernel g�s; s0�. So far
g�s; s0� has been taken to be a Gaussian [6,21] in the
1-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.96.090601


PRL 96, 090601 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
10 MARCH 2006
distance js� s0j with a prefactor related to the speed with
which we wish to reconstruct F�s�, but different kernels
can be considered. A stationary state can be reached if the
system is confined in a region �. The analysis is simplified
by considering reflecting conditions at its boundaries @�
and assuming that the gradient of the free energy in the
direction normal to @� vanishes. Other boundary condi-
tions could easily be introduced at the cost of algebraic
complications. The kernel g�s; s0� is required to satisfy the
same boundary conditions as F�s� for any fixed value of s0,
and to be such that the equation

Z
ds0g�s; s0�’0�s

0� � F�s� � 0 (2)

has a solution for the function ’0�s�.
In order to study the average properties of an ensemble

of independent metadynamics calculations, we have to
transform the stochastic description of Eq. (1) in a proba-
bilistic description. When the stochastic evolution is
Markovian, this is done using the Fokker-Planck equation.
However, Eq. (1) contains a history-dependent term (the
bias potential) and is clearly non-Markovian. In order to
circumvent this problem we define a time-dependent field
’�s; t�,

’�s; t� �
Z t

0
dt��s� s�t��� ’0�s�; (3)

which is made up of two terms: the histogram of the
positions already visited by the system and a time-
independent gauge term ’0�s� defined by Eq. (2), intro-
duced to simplify the resulting equations. With this choice
of the gauge it is implicitly assumed that the initial con-
ditions are ’�s; 0� � ’0�s�. In terms of the variables s�t�
and’�s; t� the stochastic process in Eq. (1) can be rewritten
in the simple form

ds�t� � �D
Z
ds0

@g�s; s0�
@s

’�s0; t�
��������s�s�t�

dt

�
�������
2D
p

dW; (4a)

d’�s; t� � ��s� s�t��dt; (4b)

as can be verified by direct substitution. This is the crucial
step that allows the non-Markovian evolution of a single
dynamic variable s�t� in Eq. (1) to be replaced with a
Markovian evolution for the extended set of variables
which includes s�t� and the field ’�s; t�. In fact, the state
of the system at time t� dt [s�t� dt�; ’�s; t� dt�] de-
pends only on the state of the system at time t [s�t�; ’�s; t�].
The information related to the underlying free energy F�s�
has disappeared from the equation of motion but is still
present through the initial condition for ’�s; t�; see Eq. (3).

Using the Markovian property it is possible to analyze in
a rigorous manner the behavior of Eq. (4). In particular, by
using standard techniques [26], it is possible to write a
generalized Fokker-Plank equation and study its asymp-
totic behavior for large t. We consider an ensemble of
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independent metadynamics runs, and define an ensemble
density. Since our dynamic variables are the position of the
walker s and the field’�s�, the probability density will be a
function of s and a functional of ’. We denote this proba-
bility as P�f’g; s; t�. The Fokker-Planck equation for
P�f’g; s; t� is

@P�f’g; s; t�
@t

� �
�P�f’g; s; t�
�’�s�

�DP�f’g; s; t�
Z
ds0

@2g�s; s0�

@s2 ’�s0�

�D
@P�f’g; s; t�

@s

Z
ds0

@g�s; s0�
@s

’�s0�

�D
@2P�f’g; s; t�

@s2 : (5)

Here, if the dimensionality of the system is higher than 1, a
trace is implied and the second derivative is in fact a
Laplacian. The probabilistic description in Eq. (5) is com-
pletely equivalent to the coupled stochastic Eqs. (4a) and
(4b).

Equation (5) is our main result and describes the evolu-
tion of an ensemble of metadynamics runs. We would like
to stress that this result has far more general relevance than
its application to the Langevin model in Eq. (1). In fact, our
formalism would allow mapping the metadynamics equa-
tions into a Markovian form also before performing the
dimensional reduction. For example, it could be applied to
the Hamilton equations of motion in the canonical coor-
dinates of the system, p and q, augmented with a Langevin
thermostat in order to impose the temperature. This would
lead to a set of Markovian equations in the original coor-
dinates of the system and in the field ’�s; t�, and to a
Fokker-Plank equation in a probability P�f’g; p; q; t�.

We now look for the limiting distribution of Eq. (5)
when t! 1, namely, the probability density �P which
satisfies @ �P�f’g;s;t�

@t � 0. Remarkably, this solution is inde-
pendent of s and is

�P�f’g� � C exp
�
D
2

Z
dsds0’�s�

@2g�s; s0�

@s2 ’�s0�
�
; (6)

as can be verified by direct substitution. Strictly speaking,
not all initial conditions might flow to this solution.
However, extensive numerical experimentation has shown
this not to be the case in practical applications. C is a
normalization constant, and the kernel @

2g�s;s0�
@s2 is assumed

to be symmetric and negative definite.
These kernel properties are better discussed through a

change of basis. The most general form for g with the
correct properties is

g�s; s0� �
X
k

ak�s�gkak�s
0�; with gk > 0; (7)

where the ak�s� are the eigenfunctions of the Laplacian
operator on �. In the one-dimensional case the label k is a
1-2
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FIG. 1. (a) Ratio between the present expression for the error
and the formula obtained by fitting results for d � 1 and 2 in
Ref. [21]. Since in the d � 3 case the constant C�d� was not
estimated, we assume here C�3� � C�2�. (b) Plot of the square
root of the sum in Eq. (12), indicating the dependence of the
error on �s=S for a fixed filling time (see text for details).
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positive or null integer and the basis functions are a0�s� ���������
1=S

p
and ak�s� �

��������
2=S

p
cos��ksS � for k � 0. For a cubic d

dimensional domain with side S, the eigenfunctions can be
factorized and the label k is a d-dimensional vector of
positive or null integers. For gk in Eq. (7) we can chose
the Fourier transform of a general radial function. If this
is a Gaussian with standard deviation �s, gk /

exp�� �2k2�s2

2S2 �, where k2 is the square norm of the vector
k. It is easily verified that the form in Eq. (7) for the kernel
is equivalent to adding not only a Gaussian centered on the
actual value of the CVs, but also reflected Gaussians that
are positioned at an equal distance on the other side of the
boundaries. This form of the kernel is slightly different
from the one introduced in Refs. [6,21], but eliminates the
systematic errors close to the boundaries that are observed
using the simple Gaussians [11] and produces a recon-
structed free energy that is reliable everywhere on �.
This has been extensively checked on a variety of model
systems.

Equation (6) expresses the probability of obtaining a
given field ’ at the end of a metadynamics simulation.
Since the negative of the biasing potential is used to
estimate the free energy, we define the error ��s� as the
sum of the exact underlying free energy and the biasing
potential. Using Eqs. (2) and (3) we find that the error is
linearly related to the field ’ through

��s� �
Z
ds0g�s; s0�’�s0�: (8)

Equation (6) implies that for a specific realization of a
metadynamics process the probability of finding large
errors in the estimation of the free energy is small. Using
Eq. (6) we can explicitly calculate the expected average
error of a series of runs. Since the distribution is a Gaussian
with respect to ’, the expectation value of this field is
vanishing. The error ��s� is linear in the field ’�s�, and
consequently also its expectation value is vanishing:

h��s�i � 0: (9)

Thus, we proved that the average of the biasing potential
over a series of metadynamics runs provides an unbiased
estimate for the underlying free energy.

Using Eq. (6) we can also address the problem of
accuracy, determining the expected quadratic deviation
h�2�s�i of a single metadynamics run from the average.
This expectation value can be easily calculated on the basis
of the eigenfunctions of the Laplacian:

h�2�s�i �
S2

D

X
k�0

gka
2
k�s�

�2k2 : (10)

The average value of the error in the domain � is

h�2i �
1

Sd
Z
dsh�2�s�i �

S2

DSd
X
k�0

gk
�2k2 : (11)
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A formal generalization of these expressions to domains of
a different shape is straightforward.

So far the results are quite general and can be used to
optimize the simulation parameters. Since all the metady-
namics simulations carried out so far are based on a
Gaussian kernel, it is useful to specialize our results to
this case and compare the error estimate in Eq. (11) with
the empirical expression given in Ref. [21]. In order to
facilitate the comparison we shall use the same conven-
tions as in Ref. [21]; that is to say, reintroducing standard

energy units we write in k space gk �
w�

�����
2�
p

�s�d

�G
�

exp�� �2k2�s2

2S2 �, where the energy w is the Gaussian
strength and 1=�G is the frequency at which the
Gaussians are added to the bias. In this case Eq. (11) gives

h�2i �
S2w
�D�g

�
�s

�������
2�
p

S

�
dX
k�0

exp�� �2k2�s2

2S2 �

�2k2 : (12)

This is to be compared with the empirical expression �fit �

C�d�
���������������
S2w
�D�G

�s
S

q
, where C�d� is a constant depending on the

dimensionality, namely, 0.5 for d � 1 and 0.3 for d � 2.
Since the dependence on�,D, S,w, and �G is identical, we
compare here the error as a function of �s=S. In Fig. 1(a) it
can be seen that the empirical expression works quite well,
in spite of the fact that it was fitted on a very small range of
Gaussian widths, namely, �s=S 2 �0:003; 0:05�, and that
the total error was averaged discarding the region near the
boundaries.

In Ref. [21] we also noticed that the total simulation
time required to fill the entire domain is proportional to
�g
w �

S
�s�

d. Therefore the sum in Eq. (12) is proportional to the
square error at fixed simulation time, and is a function of
the dimensionless ratio �s=S and of the dimensionality d.
As can be observed in Fig. 1(b), this quantity is a decreas-
ing function of the Gaussian width. Thus, to optimize the
accuracy of a metadynamics calculation, the width has to
be chosen to be as large as possible, the only limit being the
1-3
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resolution needed to describe the underlying free energy.
The Wang-Landau sampling as formulated in Ref. [12] can
be viewed as a history-dependent stochastic sampling in
which the kernel is a Kronecker delta. The present analysis
suggests that the use of a smoother kernel might be
advantageous.

As a final remark, we notice that a similar analysis can
be carried out also in the multiple-walkers extension of
metadynamics [25], in which Nw independent processes
contribute to the reconstructed free energy. Equation (4b)
is generalized as

d’�s; t� �
XNw
i�1

��s� si�t��dt; (13)

where si�t� is the trajectory of the walker i. It is straightfor-
ward to show that the asymptotic probability distribution of
the system is also in this case independent of si and given
by Eq. (6). This confirms the empirical result discussed in
Ref. [25] that the error does not depend on the number of
walkers.

In conclusion, the approach introduced in this Letter
allows history-dependent dynamics such as metadynamics
to be mapped in a Markovian process where the estimated
free energy is treated as a dynamical variable. We have
applied this formalism to a Langevin model system. When
the proper collective variables of a reaction are used, this
model is representative of a large class of realistic systems.
Our approach allows this stochastic dynamics to be treated
in a probabilistic manner and to search for its equilibrium
distribution. We were able to demonstrate analytically the
correctness of metadynamics, and we obtained an explicit
expression for the error in the estimated free energy at the
end of a metadynamics simulation. The present work is a
step towards the understanding of all the sampling methods
based on adaptive biases.
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[16] A. R. Oganov, R. Martoňák, A. Laio, P. Raiteri, and
M. Parrinello, Nature (London) 438, 1142 (2005).

[17] M. K. Kostov, E. E. Santiso, A. M. George, K. E. Gubbins,
and M. Buongiorno Nardelli, Phys. Rev. Lett. 95, 136105
(2005).

[18] T. Ikeda, M. Hirata, and T. Kimura, J. Chem. Phys. 122,
244507 (2005).

[19] K. Jug, N. N. Nair, and T. Bredow, Surf. Sci. 596, 108
(2005); Phys. Chem. Chem. Phys. 7, 2616 (2005).

[20] E. Asciutto and C. Sagui, J. Phys. Chem. A 109, 7682
(2005).

[21] A. Laio, A. Rodriguez-Fortea, F. L. Gervasio, M.
Ceccarelli, and M. Parrinello, J. Phys. Chem. B 109,
6714 (2005).

[22] To the best of our knowledge, the only published results
are on the Wang-Landau approach method in the limit of
slow update of the bias; see C. Zhou and R. N. Bhatt, Phys.
Rev. E 72, 025701(R) (2005).

[23] R. Zwanzig, Phys. Rev. 124, 983 (1961).
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