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Spin 1=2 Fermions in the Unitary Regime: A Superfluid of a New Type
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We study, in a fully nonperturbative calculation, a dilute system of spin 1=2 interacting fermions,
characterized by an infinite scattering length at finite temperatures. Various thermodynamic properties and
the condensate fraction are calculated and we also determine the critical temperature for the superfluid-
normal phase transition in this regime. The thermodynamic behavior appears as a rather surprising and
unexpected mélange of fermionic and bosonic features. The thermal response of a spin 1=2 fermion at the
BCS-BEC crossover should be classified as that of a new type of superfluid.
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The unitary regime is commonly referred to as the
situation in which the scattering length a greatly exceeds
the average interparticle separation, thus njaj3 � 1, where
n is the particle number density [1,2]. It is widely accepted
by theorists that at T � 0 these systems are superfluid and
that in the unitary regime the coherence length is compa-
rable in magnitude with the average interparticle separa-
tion. At T � 0 this problem has been considered by a
number of authors [3] and the most accurate results so
far have been reported in Refs. [4–6]. In 2002 it was shown
experimentally that such systems are (meta)stable, and
they have been studied extensively experimentally ever
since [7,8].

The typical theoretical treatment of such systems is
based on the idea put forward by Eagles, Leggett and
others [9], and used subsequently by most authors
[10,11]. The form of the many-body wave function is as
in the weak coupling BCS limit and is used for all values of
the scattering length a. The particle number projected BCS
wave function has the functional form

��r1; r2; r3; r4; . . .� /A���r12���r34� . . .�;

where odd subscripts refer to spin-up particles and even
subscripts to spin-down particles, A is the antisymmetri-
zation operator, r12 � jr1 � r2j or ��r� is either the
Cooper pair wave function in the BCS limit, or the two-
bound state wave function in the Bose-Einstein condensa-
tion (BEC) limit. The main difficulty with this approach
becomes evident when one tries to use this kind of wave
function in the unitary regime, where njaj3 � 1. In the
extreme BEC limit, this wave function describes a state
with all bosons (dimers) at rest, in the condensed state. The
fraction of noncondensed bosons (dimers) is known to be
small; then
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where nd � n=2 and add � 0:6a is the dimer-dimer scat-
tering length [6,12]. When one approaches the unitary
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regime, the fraction of noncondensed bosons becomes of
order one [13], which resembles qualitatively the situation
in superfluid 4He, and then a mean-field description (with
or without fluctuations) becomes questionable.

In order to calculate the thermal properties of a system
of fermions in the unitary regime, we have placed them on
a 3D-spatial lattice and used a path integral representation
of the partition function. We start from

Z��;�� � Tr

(YN�
j�1

exp����Ĥ ��N̂��

)
; (1)
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)
; (2)

where � � 1=T � N�� and Ô is a quantity of interest. T
stands for the temperature and � for the chemical poten-
tial, and Ĥ and N̂ are the Hamiltonian and the particle
number operators, respectively.

Since the system under consideration is dilute, we shall
use a zero-range two-body interaction with a cutoff in mo-
mentum. Specifically, V�r1 � r2� � �g��r1 � r2�, with
the additional prescription that all two-body matrix ele-
ments of this interaction vanish, if the relative momentum
of the two particles exceeds a given cutoff momentum @kc.
The renormalized coupling strength of this interaction is
given by the following prescription
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As we ultimately place the fermions on a spatial 3D lattice,
an implicit cutoff momentum is introduced by the lattice
spacing l. If we were to allow the particles to move without
restriction in all three spatial directions on such a 3D
lattice, we would be able to solve exactly the quantum
mechanical problem with the restriction only on the parti-
cle momenta [14]. We impose periodic boundary condi-
tions and consider the many-fermion system in a cubic box
of side L � Nsl. It would be desirable to have L exceed
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significantly the coherence length. At T � 0 this condition
is easily satisfied for a many-fermion system interacting
with a large scattering length, when njaj3 � 1. At tem-
peratures jT � Tcj 	 Tc this is not true anymore, as the
coherence length diverges when T ! Tc. The phase tran-
sition on a finite lattice is rounded and it will not show the
expected singular continuum behavior. Since the momen-
tum space on a 3D lattice has the shape of a cube, while
typically in field theoretical models with momentum cutoff
the shape is spherical, we have included in calculations
only 3D-momenta satisfying the condition k 
 kc < �=l,
in order to facilitate the analysis.

The next step is to generate a sufficiently accurate
representation of the propagator exp����H ��N�� as

exp����Ĥ ��N̂�� � exp
�
�
��K̂ ��N̂�
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exp���V̂�
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;

where K̂ is the kinetic energy operator. The interaction
becomes a simple Hubbard attractive potential V̂ �
�g

P
in̂"�i�n̂#�i�, where i labels the 3D-lattice sites and

n̂";#�i� are the number densities for the two spin states at a
given spatial site i. The action of each factor is evaluated
either in coordinate or momentum space, respectively, and
the fast Fourier transform is used to connect these repre-
sentations. The kinetic energy has the correct dispersion
for momenta smaller than the cutoff momentum @kc,
namely "k � @

2k2=2m. We have used a discrete
Hubbard-Stratonovich representation of this interaction
energy, similar to Ref. [15]:

exp�g�n̂"�i�n̂#�i�� �
1

2

X
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Here A �
��������������������������
exp�g�� � 1

p
and j is the label for the corre-

sponding imaginary time step. The partition function can
then be expressed in the form

Z��;�� � Tr
Z Y

ij

D��i; j�U�f�g�;

U�f�g� � T� expf���ĥ�f�g� ���g;

where T� stands for a time-ordering operator. ĥ�f�g� is a
one-body Hamiltonian, which has exactly the same form
for both spin-up and spin-down states, and the measureQ

ijD��i; j� is assumed to contain the appropriate normal-
ization factors. The expectation value of any operator takes
the form

O��;�� �
Z Q

ijD��i; j�TrU�f�g�

Z�T�
TrÔU�f�g�
TrU�f�g�

: (3)

The trace can now be evaluated over all possible Slater
09040
determinants with various particle numbers and various
expectation values acquire very simple forms [16,17].
There is no fermion sign problem in this case, since

TrU�f�g� � fdet�1�U�f�g��g2 > 0; (4)

and the determinant is computed in the spin-up (or spin-
down, which is identical to spin-up) single-particle Hilbert
space. The many-fermion problem has thus been reduced
to a typical auxiliary field quantum Monte Carlo problem,
to which the standard Metropolis algorithm can be applied,
using Eq. (4) as a measure. At each Monte Carlo step we
have randomly changed the signs of a fraction of the �
fields at all spatiotemporal lattice sites. We have increased
or decreased the fraction of sites where the � fields were
updated, so as to maintain a running average acceptance
ratio (over the latest hundred Monte Carlo steps) between
0.4 and 0.6. In our simulations we evolved in imaginary
time single-particle wave functions (plane waves) with
momenta @k 
 @kc and calculated the measure Eq. (4).
In order to avoid numerical instabilities at low tempera-
tures the singular value decomposition technique was used
[16]. The expectation values in Eq. (3) were computed
using the one-body density matrices

n";#�x; y� �
X

k1;k2
kc

’k1
�x�

�
U�f�g�

1�U�f�g�

�
k1;k2

’�k2
�y�;

where ’k�x� � exp�ik � x�=L3=2.
Wingate [18], using the formalism of Ref. [19], has

estimated the critical temperature to be Tc � 0:05"F, but
for a value of the scattering length a that was not deter-
mined precisely. The similar treatment in Ref. [20] has in
our opinion large discretization errors. In both approaches
the choice of the kinetic energy as a simple hopping term
can also lead to significant systematic effects.

The results of our simulations for lattices ranging from
63 � 1361 and 83 � 1732 (at low T) to 63 � 300 and 83 �
257 (at high T) and for 2 . . . 20� 105 Monte Carlo samples
(after thermalization) are shown in Fig. 1. The imaginary
time step was chosen as � � min�ml2=15�2

@
2; ln2=10g�.

We have estimated that the Monte Carlo correlation length
is approximately 150 Metropolis steps at T � 0:2"F.
Consequently, the statistical errors are of the order of the
size of the symbols in Fig. 1. The chemical potential was
chosen in such a way as to have a total of about 20 particles
for the 63 lattice and about 55 particles for the 83 lattice. In
all runs the single-particle occupation probabilities for the
highest energy states were significantly below a percent at
all temperatures.

At Tc � 0:23�2�"F the behavior of E�T� changes. Here
"F is the Fermi energy of the free Fermi gas with the same
number density n � N=L3. Mean field plus fluctuations
estimates put Tc at values slightly above the condensation
temperature in the BEC limit, namely TBEC � 0:218"F
[11]. If a Fermi gas exactly at resonance behaves as a
BCS superfluid, then its critical temperature would be
4-2
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FIG. 1. The total energy E�T� is shown with open circles for a
83 lattice and with triangles for a 63 lattice, and the chemical
potential ��T� with squares for the case of a 83 lattice. The
combined Bogoliubov-Anderson phonon and fermion quasipar-
ticle contributions Eph�qp�T� equation (5) is shown as a dashed
line. The solid line is EFg�T� � 0:6"FN�1� �n�, where EFg�T� is
the energy of a free Fermi gas. In the upper left inset we show the
entropy per particle S�T�=N � �5E�T�=3���T�N�=NT with
circles for 83 and squares for 63 lattices, and with a solid line
the entropy of a free Fermi gas with a slight vertical offset. In the
lower right inset we plot the condensate fraction 
�T� as defined
in Ref. [13], with circles the 103-lattice results, with squares the
83-lattice results, and with triangles the 63-lattice results, and the
solid curve is 
�T� � 
�0��1� �T=Tc�3=2�.
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Tc � 0:277"F, when including the correction due to
Ref. [21]. A mean field plus fluctuations approach predicts
Tc � 0:26"F [22].

At very low temperatures one can expect that only two
types of elementary excitations exist, the boson-like
Bogoliubov-Anderson phonons and the fermion-like
gapped Bogoliubov quasiparticles. One can estimate their
contribution to the total energy E�T� by assuming that at
T � 0 the system is a Fermi superfluid with a ground state
energy and a pairing gap determined in Ref. [4]:
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3
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�
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where � is the approximate value of pairing gap at T � 0
determined in Ref. [4] to be very close to the weak cou-
pling prediction of Gorkov and Melik-Barkhudarov [21],
and �s � 0:44 and "F � @

2k2
F=2m and n � k3

F=3�2 re-
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spectively. The sum of these contributions is plotted in
Fig. 1 as a dashed line. Numerically, both these contribu-
tions are comparable in magnitude over most of the tem-
perature interval (0; Tc). One should not take seriously the
apparent agreement though, as these expressions are only
approximate formulas for T 	 Tc. It is notable that at
temperatures in the vicinity of Tc both fermionic and
bosonic elementary excitations seem to be equally impor-
tant, unlike the BCS or BEC limits, where only one type of
excitations is relevant. At T > Tc the system is expected to
become normal. The fact that its specific heat is essentially
that of a normal Fermi liquid EFg�T� is, however, somewhat
of a surprise, as one would expect the presence of a large
fraction of noncondensed unbroken pairs. The caloric
curve for a free Fermi gas EFg�T� was offset vertically, so
as to agree approximately at T � 0 with the estimate of the
energy of a Fermi gas in the unitary regime in the normal
phase. The value �n can be estimated using the (approxi-
mate) condensation energy � �3�2N=8"F.

One cannot fail to notice the behavior of the chemical
potential ��T�, which is essentially constant for T < Tc,
and decreasing with T, as expected, for T > Tc. Apart from
the natural vertical offset, this behavior is very similar to
the behavior of the chemical potential for an ideal Bose gas
undergoing condensation and it has some unexpected con-
sequences. The T dependence of the energy of a spin 1=2
fermion system at unitarity can be represented by introduc-
ing the universal function ��x� [with ��0� � �s] as

E�T� � N
3

5
"F�

�
T
"F

�
; (7)

which together with � � const at T < Tc implies

�
�
T
"F

�
� �s � 	

�
T
"F

�
n
; where n �

5

2
: (8)

This temperature dependence is characteristic of an ideal
Bose condensed gas, even though the system is also super-
fluid at the same time. From our simulations we infer that
the value of the exponent cannot differ from n � 5=2 by
more than about 10%, and that values either n 
 2 (n � 2
would be expected for a normal Fermi system) or n � 3
(n � 4 would be expected at T 	 Tc for a fermion super-
fluid) are inconsistent with our data. Our results are con-
sistent with an effective boson mass m� � 3m in this
temperature interval (determined from 	 / m�3=2).

One can also show that the entropy is given by

S�T� �
3

5
N
Z T="F

0
dy
�0�y�
y

; (9)

where the prime indicates a derivative with respect to the
argument. Thus S�T� / T3=2 for T < Tc, which is inter-
mediate between the behavior of a Fermi (/T) and a Bose-
phonon (/T3) systems. Since S�T� in either the BEC or
BCS limits can be easily determined [23], one can use the
entropy S�T� calculated here—see Eq. (9) and the upper
4-3
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left inset in Fig. (1)—to construct an absolute temperature
scale in the unitary regime, using an adiabatic tunning of
the scattering length, and extending thus the ideas of
Ref. [23] to the unitary regime.

Apart from various themodynamic potentials, we have
computed the temperature dependence of the condensate
fraction 
�T�, as defined in Ref. [13] and evaluated for a
r � L=2 pair separation. The condensate fraction defines
the off diagonal long range order of the two-body density
matrix [24]. In complete agreement with the behavior of
the thermodynamic potentials, the temperature dependence
of the condensate fraction 
�T� is consistent with Tc �
0:23�2�"F. The functional form of 
�T� is, surprisingly,
similar to that of an ideal Bose gas; see right inset in Fig. 1.

The value of Tc determined here cannot be compared
with the recent experimental result from Duke University
[8]. The presence of a trap can change significantly the
thermodynamic properties, and, in particular, the surface
modes can play an unexpectedly large role; see Ref. [25].

In conclusion, we have performed a fully nonperturba-
tive calculation of the energy of a spin 1=2 fermion system
in the unitary regime, by placing the particles on a judi-
ciously chosen spatial 3D lattice, in a path integral for-
mulation of the many-body problem. We have determined
the critical temperature of the superfluid-normal phase
transition as Tc � 0:23�2�"F. The thermodynamic behav-
ior appears as a rather surprising and unexpected mélange
of fermionic and bosonic features. The thermal response of
a fermion system at the BCS-BEC crossover suggests that
such a system should be considered a new type of
superfluid.
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Note added in proof.—Burovski et al. [26] performed a
finite size analysis and claim that Tc="F � 0:152�7�.
While we believe that the system sizes used are too small
to evidence the critical power law behavior near Tc, we
notice that their results are in remarkable agreement with
ours and, combined with the T � 0 data of Refs. [4,6],
show that C�T� � �E�T�=�T is largest for T="F 2
�0:15; 0:3�, which is roughly consistent with our findings.
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