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Entangled Photon Holes
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Most experimental demonstrations of entanglement require nonclassical states and correlated mea-
surements of single-photon detection events. It is shown here that entanglement can produce a large
decrease in the rate of two-photon absorption for a classical input state that can be observed using classical
detectors. These effects can be interpreted as being due to the creation of entangled photon holes that are
somewhat analogous to the holes of semiconductor theory.
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FIG. 1. (a) Two-photon probability amplitude from parametric
down-conversion, where the photons are known to be at the same
location (to within the bandwidth of the source) with an equal
probability amplitude for all locations, such as points A and B;
(b) Two-photon probability amplitude for the entangled photon
holes produced by two-photon absorption, where there is an
equal probability amplitude for two photons to have been re-
moved from any location.
Entanglement is one of the most fundamental properties
of quantum systems and it plays a major role in quantum
information processing, for example. Here we show that a
classical input state incident on a three-level atomic me-
dium will undergo two-photon absorption [1–13] at a rate
that is greatly reduced by the generation of entangled
photon holes that are somewhat analogous to the holes of
semiconductor theory. The effects of entanglement can
then be observed using a classical detector, such as an
intensity meter. The entangled photon holes can also vio-
late Bell’s inequality if single-photon detectors are used.

Many nonclassical features of two-photon absorption
have already been described [3–12], including an en-
hanced rate of two-photon absorption when the incident
photons are entangled [3,8,9,12]. The pairs of photons
from parametric down-conversion are known to have
been emitted at nearly the same time, but that time is
completely uncertain in the quantum-mechanical sense,
as illustrated in Fig. 1(a) [14]. The fact that the photons
are incident on any given atom at the same time while their
total energy is still well defined gives rise to an increase in
the rate of two-photon absorption, which can be linearly
dependent on the intensity of the incident beam [8,9,12].

The situation of interest here is essentially the inverse of
parametric down-conversion, as illustrated in Fig. 1(b). In
the limit of large detunings, three-level atoms will absorb
pairs of photons at very nearly the same time, producing a
decrease in the probability amplitude for both of the pho-
tons to be at the same location. In analogy with the holes of
semiconductor theory, the reduced probability amplitudes
of Fig. 1(b) can be viewed as entangled photon holes in an
otherwise constant background. Entanglement of this kind
can reduce the rate of two-photon absorption to a level that
is substantially less than that of classical or semiclassical
theory. Roughly speaking, the magnitude of the dips in the
probability amplitude will continue to increase until there
is no significant probability amplitude for two photons to
be found at the same location.

The state vectors corresponding to the probability am-
plitudes of Figs. 1(a) and 1(b) cannot be written as the
product of two single-particle states and both systems are
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thus in an entangled state. One way to demonstrate the
entanglement is by showing that Bell’s inequality can be
violated, as will be done later in the Letter after we first
consider the macroscopic effects of the entangled photon
holes.

Two-photon absorption is often treated semiclassically
[1,13], by using one or two quantized field modes [5–7], or
to lowest order in perturbation theory for a continuum of
field modes [4,8,9,11,12,15]. Although analytic results can
be obtained using those approximations, the effects of
interest here require a multimode calculation performed
to all orders. In the absence of an analytic solution, nu-
merical methods were used to integrate Schrödinger’s
equation as the incident photons propagated past a series
of three-level atoms. The field was assumed to propagate in
only one longitudinal dimension x, which would be a
reasonable approximation for light propagating in a
single-mode optical fiber, for example.

Periodic boundary conditions were assumed with peri-
odicity L, which determines the spacing between the al-
lowed wave vectors k. The incident photons were assumed
to be nondegenerate with central wave vectors k01 and k02.
Only a limited number n of modes for each photon could
2-1 © 2006 The American Physical Society
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be included in the numerical calculations, and wave vec-
tors outside of a band �k centered about k01 and k02 were
neglected. This limits the spatial resolution of the numeri-
cal results but it is sufficient to demonstrate the effects of
interest, as will be discussed below. It was further assumed
that the energy of photon 1 differed from that of the first
excited atomic state by @�!, where �! is the detuning, so
that photon 1 would be absorbed first in a virtual transition
to the upper atomic level.

The incident fields were assumed to be weak coherent
states with negligible probability that more than two pho-
tons will be incident on the atomic medium. The only
contribution to the two-photon absorption rate occurs
when a single photon is present in each beam, so that we
only need to consider the terms in the initial state vector
that correspond to single-photon number states for each
photon. The incident photons were assumed to be in
Gaussian wave packets with width �k� �k in momen-
tum space, and the spacing between the atoms was taken
to be sufficiently large that the photons only interacted
with one atom at a time, which further simplified the
calculations.

With these approximations, there were n2 terms in the
state vector corresponding to two photons with wave vec-
tors k1 and k2, n terms corresponding to a single photon
and the atom in the first excited state, and one additional
state with the atom in the upper level. This gives a total of
n2 � n� 1 basis states in Hilbert space, and the
Hamiltonian describing this system contained more than
n4 terms (most of which were zero). Schrödinger’s equa-
tion for this system was integrated numerically using
MATHEMATICA, and it was found that the required execu-
tion time did scale as n4 even though the Hamiltonian was
sparse. The necessary calculations could be performed for
a given set of parameters in four hours for n � 50, which
was taken to be the baseline for all of the calculations
reported here. A subset of the calculations were repeated
using n � 100, which gave nearly identical results and
justified the use of n � 50 for the remaining calculations.

In this basis, the Hamiltonian for the system can be
written as

Ĥ �
X
k1

�âyk1âk1 � 1=2�@!1 �
X
k2

�âyk2âk2 � 1=2�@!2

� E1�̂
y
G1�̂G1 � E2�̂

y
12�̂12 �

X
k1

M1�̂
y
G1âk1eik1x

�
X
k2

M2�̂
y
12âk2eik2x � H:c: (1)

Here E1 and E2 are the energies of the relevant atomic
states, the operators âyk1 and âyk2 create a photon with wave
vector k1 or k2, �̂yG1 produces a transition from the atomic
ground state to the first excited state, �̂y12 produces a
transition to the second excited state, M1 and M2 are the
corresponding matrix elements, and x is the position of the
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atom. The value of E2 was adjusted to be on resonance
while !1�k1� and !2�k2� were chosen to ensure that the
group velocities of the two photons were the same. This
Hamiltonian does not include any loss or decoherence of
the excited atomic states, which is a valid approximation
when the transit time of the photon wave packets through
the location of an atom is small compared to the decoher-
ence time. Schrödinger’s equation for this Hamiltonian
corresponded to a set of n2 � n� 1 coupled differential
equations that were solved numerically.

It is convenient to define the factors F1, f1, and g1 by the
relations

�k1 � F1k01; �k1 � f1k01; M1 � g1
@!01

2
:

(2)

The final equation defines the coupling constant g1 in such
a way that g1 � 1 would correspond to a Rabi frequency of
!01. Similar parameters were defined for photon 2, with
F2 � F1 and f2 � f1. The value of k01 � 2�=�0 was
chosen to correspond to a central wavelength �0 of
1 �m. Although calculations were performed for a range
of parameters, the results shown here all correspond to
F1 � 0:01, f1 � 0:001, g1 � 0:0035, g2 � 0:00 071, and
�! � 0:1 !01, unless otherwise noted. The values of g1

and g2 were chosen to give roughly 2% two-photon ab-
sorption per atom in order to reduce the number of atoms
required to demonstrate the effects of interest. These ma-
trix elements are larger than would be expected for a
typical atomic transition, but this approach was necessary
in order to limit the computer execution time and it does
not affect the nature of the results.

Figure 2(a) shows the initial intensity distribution I1�x�
of the field associated with photon 1 while Fig. 2(b) shows
the probability P2�s� of detecting two photons separated by
a distance s. The single-photon intensity I1�x� was calcu-
lated by tracing over the photon-2 components while P2�s�
was given as usual by

P2�s� � �
Z
dx1hÊ

�
1 �x1�Ê

�
2 �x1 � s�Ê

�
2 �x1 � s�Ê

�
1 �x1�i;

(3)

where � is a constant associated with the detection effi-
ciency and time window.

It was assumed that the atoms were located along the
path of the photons with a separation of 1 mm, which is
much longer than the width of the wave packets of
Fig. 2(a). The initial state was then propagated for a time
interval �t during which the photons interacted with one or
more atoms. The single-photon intensity and coincidence
detection probability are shown in Figs. 2(c) and 2(d) for
the case in which the photon wave packets had propagated
a distance of 5 mm and interacted with 5 atoms. It can be
seen that the single-photon intensity I1�x� has nearly the
same shape that it did initially while the coincidence
2-2
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FIG. 3. (a) The dots indicate the probability of remaining in
the initial two-photon state after passing through nA atoms, while
the line represents an exponential decay curve fitted to the first
two data points. (b) The integrated intensity as a function of
propagation distance as calculated using semiclassical theory.
(c) The probability of remaining in the initial two-photon state
for the case in which the photons are traveling in opposite
directions. The fluctuations in these data are due to the random
choice of the positions of the atoms.
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FIG. 2. Single-photon intensity (a) as a function of position
and two-photon detection probability (b) as a function of sepa-
ration in the initial state. The corresponding results after passing
through five atoms are shown in (c) and (d).
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counting probability P2�s� shows a small dip centered on
s � 0 as would be expected.

The probability PI of remaining in the initial two-photon
state is plotted in Fig. 3(a) as a function of the number of
atoms with which the photons have interacted. It can be
seen that the two-photon absorption rate decreases for
larger numbers of atoms and that PI approaches a plateau
after �20 atoms, which is consistent with the expected
effects of the entangled photon holes. Additional calcula-
tions were performed using twice the bandwidth �k, which
resulted in a narrower coincidence dip and a plateau at a
larger value of PI as would be expected. These effects can
be shown to depend on the fourth-order coherence proper-
ties of the field, as is also the case in Ref. [11], for example.

A semiclassical treatment of two-photon absorption for
!01 �!02 gives [1]

dI1

dt
�
dI2

dt
� ��I1I2: (4)

Here � is a constant that can be derived from the atomic
matrix elements and I1 and I2 are the intensities of the two
beams. This set of equations was also integrated numeri-
cally using a value of � that was chosen to give a two-
photon absorption rate similar to that of the earlier calcu-
lations. The integrated intensity (total energy) is plotted as
a function of time in Fig. 3(b). It can be seen that the
semiclassical rate of two-photon absorption also deviates
from a simple exponential due to the nonlinear nature of
Eq. (4), but it does not approach a plateau like the data of
Fig. 3(a). Thus the decrease in the rate of two-photon
absorption due to the entangled photon holes is inconsis-
tent with semiclassical theory.
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We have previously suggested that quantum logic op-
erations could be performed using the quantum Zeno effect
imposed by strong two-photon absorption [15], and it is
apparent that entangled photon holes may have an adverse
effect on the operation of devices of that kind. These
difficulties can be avoided if the photons propagate in
opposite directions, in which case the photon holes will
travel away from each other and the probability of finding
two photons in the same location will not be prematurely
depleted. This can be seen in Fig. 3(c), where it was
assumed that the photons propagated in opposite directions
around a ring with a 1 mm circumference, with the atoms
located in randomly chosen positions. Although the two-
photon absorption no longer saturates as before, the data
depart from a true exponential decay due to the effects of
dispersion on the wave packet of photon 1. Dispersion also
plays a role for the data of Fig. 3(a) for larger numbers of
atoms.

We now return to the entangled nature of the photon
holes and show that they can violate Bell’s inequality if
single-photon detectors are used. First, consider the case of
entangled pairs of photons from parametric down-
conversion, discussed in an earlier Letter [14]. We assume
that the photons propagate through two distant Mach-
Zehnder interferometers containing a long path L and a
short path S, with phase shifts �1 and �2 in the two longer
paths. If we only consider coincident events in which the
photons arrive at two single-photon detectors at the same
2-3
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time, there will be no contribution from events L1S2 or
S1L2 in which the photons travel paths of different lengths.
Quantum interference between the probability amplitudes
for S1S2 and L1L2, where both photons travel the longer or
the shorter paths, produces a coincidence counting rate
proportional to cos2���1 ��2�=2	 (aside from a constant
phase factor), which violates Bell’s inequality [14].

Bell’s inequality can be violated in a similar way by the
entangled photon holes of Fig. 1(b) if the initial state
corresponds to two weak coherent states at two different
frequencies !1 and !2. The probability that more than one
photon will be present in either beam is assumed to be
negligible and the dips in the two-photon probability am-
plitude are assumed to go to zero. Using the same dual-
interferometer arrangement, there will now be no contri-
bution from the S1S2 and L1L2 events, since no photons
are emitted from the source (two-photon absorbing me-
dium) at the same time. Quantum interference between
the probability amplitudes corresponding to L1S2 and
S1L2 will produce a coincidence rate proportional to
cos2���1 ��2�=2	, which also violates Bell’s inequality.
The sum of the frequencies of the detected photons is well
defined, just as in the original case of down-converted
photons, but here the coherence comes directly from the
input state. A more detailed derivation of these results
using the second-quantized approach of Ref. [14] will be
submitted for publication elsewhere.

The interpretation of these effects is complicated by the
fact that the detectors register the presence of the photons,
not the holes. In the ideal case, the photons that are actually
detected in the long-short or short-long events are emitted
directly by the lasers and are unaffected by the two-photon
absorbing medium. The simplest explanation is that the
entangled photon holes suppress the detection process in a
very nonclassical and nonlocal way.

The analogy between these effects and the holes of
semiconductor theory is obviously limited by the fact
that photons are bosons and not fermions. As a result, the
background states are occupied with a probability ampli-
tude much less than one in the examples of interest here, in
contrast to the unit probability amplitudes for fermions
09040
below the Fermi level. Nevertheless, the situations are
analogous in the sense that there is ‘‘an unoccupied space’’
in an otherwise constant background, which is the conven-
tional definition of a hole. The concept of holes is of
obvious use in understanding the nature of excitons in
semiconductor theory, for example, and the notion of en-
tangled photon holes has already been useful in predicting
and understanding the phenomena described here. It is
hoped that the notion of photon holes will be of wider
use in other areas of quantum optics as well.

I would like to thank Todd Pittman for his comments on
the Letter. This work was supported by DTO, ARO, and
IR&D funds.
2-4
[1] Y. R. Shen, Principles of Optics (Wiley, New York, 1984).
[2] R. W. Boyd, Nonlinear Optics (Academic, San Diego, CA,

2003).
[3] M. C. Teich and G. J. Wolga, Phys. Rev. Lett. 16, 625

(1966).
[4] B. R. Mollow, Phys. Rev. 175, 1555 (1968).
[5] P. Chmela, Opt. Acta 32, 1549 (1985).
[6] G. S. Agarwal and G. P. Hildred, Opt. Commun. 58, 287

(1986).
[7] P. Alsing and M. S. Zubairy, J. Opt. Soc. Am. B 4, 177

(1987).
[8] J. Gea-Banacloche, Phys. Rev. Lett. 62, 1603 (1989).
[9] J. Javanainen and P. L. Gould, Phys. Rev. A 41, 5088

(1990).
[10] N. P. Georgiades, E. S. Polzik, K. Edamatsu, H. J. Kimble,

and A. S. Parkins, Phys. Rev. Lett. 75, 3426 (1995).
[11] H.-B. Fei, B. M. Jost, S. Popescu, B. E. A. Saleh, and

M. C. Teich, Phys. Rev. Lett. 78, 1679 (1997).
[12] B. Dayan, A. Pe’er, A. A. Friesem, and Y. Silberberg,

Phys. Rev. Lett. 94, 043602 (2005).
[13] I. Perez-Arjona, G. J. de Valcarcel, and E. Roldan, quant-

ph/0402155.
[14] J. D. Franson, Phys. Rev. Lett. 62, 2205 (1989); 67, 290

(1991).
[15] J. D. Franson, B. C. Jacobs, and T. B. Pittman, Phys. Rev.

A 70, 062302 (2004).


