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FIG. 1. (a) The �w modulation frequency dependence of spin
1=2 PLDMR in MEH-PPV film measured at 10 K at two �w
powers. (b) The laser excitation frequency dependence of the
polaron PA at 0.4 eV. The PA response is dispersive and does not
depend on the �w power.
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Comment on ‘‘Yield of Singlet Excitons in Organic
Light-Emitting Devices: A Double Modulation
Photoluminescence-Detected Magnetic Resonance
Study’’

In a recent Letter [1] Lee et al. studied the spin
1=2 photoluminescence-detected magnetic resonance
(PLDMR) of a soluble derivative of poly-phenylene
vinylene [MEH-PPV] using a double modulation scheme,
where both the laser excitation intensity and the microwave
power were modulated at !ex and!� (!��!ex), respec-
tively. The obtained results were used to attempt differ-
entiating between the quenching and the spin dependent
recombination (SDR) models for PLDMR [2]. Also, an
alternative model to the SDR was introduced [1] in which
triplet excitons interact with polarons, (T-Pmodel) leading
to a reduction of both species. It was concluded [1] from
the !� dependence of PLDMR that the polaron recombi-
nation time is�30 �s. This conclusion is unjustified, how-
ever, since the authors overlooked [already in Eq. (1)] the
role of the polaron lifetime distribution, and spin subsys-
tem dynamics on the PLDMR frequency response. In
addition, the T-P model [1] is not viable in �-conjugated
polymers in general, and in MEH-PPV, in particular.

In textbook introduction to PLDMR [3] the spin-lattice
relaxation and microwave (�w) power are shown to play
an important role in determining the PLDMR dynamics
and magnitude, especially for SDR [4]. Since SDR is
inherently dispersive with a very broad distribution of
recombination times � [3], then the spin-lattice relaxation
time, TSL, separates pairs with �� TSL that contribute
strongly to PLDMR [5] from those pairs with �� TSL

that contribute very weakly to PLDMR [3–5]. Thus the
!�-dependence PLDMR is sensitive to the spin dynamics
as well as recombination kinetics of the spin-carrying
excitations.

We have compared the !ex dependence of polarons in
MEH-PPVat 10 K using the photoinduced absorption (PA)
technique at 0.4 eV with the spin 1=2 PLDMR !� depen-
dence at different �w powers (Fig. 1). These modulation
frequency dependencies are not similar to each other for
both in-phase and quadrature components, thus revoking
the claim in [1] that the spin 1=2 PLDMR !� dependence
‘‘yields the lifetimes of the spin-carrying species respon-
sible for the resonance.’’ In particular, it is clear from Fig. 1
that the recombination mechanism of the polaron PA,
unlike the PLDMR, is both slower and dispersive due to
a very broad distribution of lifetimes. In addition, the
PLDMR response depends on the �w power, whereas
the PA response does not. We thus conclude that the
apparent time constant in the PLDMR !� dependence is
not the spin-carrying recombination lifetime as claimed in
[1]; but instead is determined by TSL, �w power, and �
distribution. Consequently, the analysis of the flat double
modulation !ex dependence in [1] that is based on Eq. (1)
is questionable.
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Second, the T-P model advanced in [1] cannot explain
the existence of spin 1=2 PLDMR when the triplet exciton
density is negligibly small. This occurs in MEH-PPV at
elevated temperatures (�230 K) where the triplet PA is
negligible whereas the spin 1=2 PLDMR dynamics does
not change much, as well as in many �-conjugated poly-
mers where the triplets are unstable. Two examples of such
polymers include: (i) C60-doped MEH-PPV, in which the
triplet excitons dissociate at the C60 sites [6], yet we
measured �L=L� 4� 10�4 at g � 2. (ii) The degenerate
ground state polymer poly(di-phenyl-acetylene), in which
the triplet excitons are unstable against dissociation into
solitons pairs [7], yet we measured dL=L� 2� 10�4. The
underlying mechanism of the spin 1=2 PLDMR in these
examples cannot be associated with triplet excitons and
thus the SDR model, which does not explicitly involve
triplets [2–5], can uniquely explain the results. Con-
sequently, if the SDR model is viable when the triplet
density is small, then this mechanism cannot be turned
off in other situations and polymers.
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