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Cochlea’s Graded Curvature Effect on Low Frequency Waves
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In the ear, sound waves are processed by a membrane of graded mechanical properties that resides in
the fluid-filled spiral cochlea. The role of stiffness grading as a Fourier analyzer is well known, but the role
of the curvature has remained elusive. Here, we report that increasing curvature redistributes wave energy
density towards the cochlea’s outer wall, affecting the shape of waves propagating on the membrane,
particularly in the region where low frequency sounds are processed.
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In the ear, sound processing takes place on the cochlea’s
basilar membrane (BM). Sounds are transmitted to the
cochlear fluids, which interact mechanically with the mem-
brane, causing it to vibrate in the form of a traveling wave
that propagates along the membrane’s length (Fig. 1).
Because of the BM’s graded stiffness, wave amplitude
changes as the wave propagates and is maximized at a
membrane stiffness characteristic to a certain frequency.
The BM thus decomposes incoming sounds into their
component frequencies, and is often characterized as a
Fourier analyzer designed by nature. Other anatomical
features of the cochlea have also been shown to affect
the physics of hearing: the maximized BM amplitude
interacts with the cochlear microstructure to generate ra-
dial shearing forces that open ion channels in neurosensory
hair cells. But the role of perhaps the most characteristic
feature of the cochlea, its graded curvature forming a spiral
shell, has remained elusive.

The long-standing impression is that the spiral shape
does not affect hearing, and that the shape facilitates
packing the cochlea into a small space. Physical and
mathematical models have shown that curvature does not
affect maximum amplitude of the BM’s centerline [1–3],
nor shift the maximum amplitude place along the BM [4].
Mammalian behavioral audiograms, however, suggest oth-
erwise. Statistics point at a strong correlation between
number of spiral turns and low frequency hearing thresh-
olds [5]. The question arises whether, in studying the effect
of curvature, the appropriate physical quantities were ex-
amined. Wave energy remains constant as BM waves travel
along the cochlear duct, because the change of cochlear
dimensions, including curvature, are very slow [6]. Since
wave energy is conserved, one could argue that quantities
that are averaged over the duct cross-section are also
conserved. Wave amplitude at the BM midline may not
be affected by curvature, since the midline could be
thought of as being close to a cross-sectional average.
Curvature, however, has been shown to generate a radial
gradient in the fluid pressure [3]. Given that neurosensory
cells are stimulated by radial shear forces, it is surprising
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that radial shear or radial changes in the BM wave ampli-
tude have not been examined in curved models and the
mechanics of wave transmission have been studied on
straight models instead.

In this Letter, we report that cochlear curvature, by
redistributing wave energy density across the duct width,
enhances radial shearing in the BM region where low
frequency sounds are analyzed. We explain energy redis-
tribution by drawing an analogy between wave energy flow
and geometric optics. In explaining the ‘‘whispering gal-
lery’’ phenomenon in London’s St. Paul cathedral,
Rayleigh [7] showed that a pencil of rays emanating
from a source towards a nearby concave boundary would,
after any number of reflections, be confined near the
boundary. In the cochlea, rays represent wave energy
propagation paths reflecting off the concave outer wall.
We find, however, that the curvature gradient has an addi-
tional role: by reflecting off a wall of decreasing radius of
curvature, rays progressively focus on the outer wall, cor-
responding to an increase in wave energy density. The
effect is strongest at the cochlear spiral end (apex), which
has the smallest radius of curvature and where low fre-
quency sounds are analyzed. This suggests an effect of the
cochlear spiral on low frequency sound perception.

To isolate and quantify the effect of curvature on the BM
traveling wave, we ignore all geometrical factors other
than curvature and BM mass and stiffness. Our simplifica-
tion extends to considering a BM of constant width (equal
to duct width). The fluid is assumed incompressible, irro-
tational (with velocity v � r�), contained in two ducts
symmetrically divided by the BM. If the upper and lower
domains are symmetric, it suffices to look at the mass
conservation and the (spatially integrated) linearized mo-
mentum equations of the lower duct [8]:

r2� � 0; (1)

P2 � �
@�

@t
� 0: (2)

Moreover, if the fluid pressure right above and below the
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FIG. 1. (a) The cochlea is modeled as a fluid-filled spiral domain, separated by the cochlear partition (CP) into upper and lower fluid
ducts. A blowup of the spiral model cross section is shown in (b). Part of the CP is the elastic basilar membrane (light gray), which is
designed to respond to high frequencies (20 kHz for humans) at the base and progressively to lower frequencies towards the apex,
where the BM is widest and most compliant and responds to about 20 Hz. (c) Side view of the wavelike displacement of the BM in a
rolled out cochlea. Incoming sounds, transmitted to the cochlear fluids via a membrane covering the entry of the duct (between z � 0
and z � H), initiate a traveling wave on the BM. Wave amplitude (normally up to a few nanometers) has been exaggerated to illustrate
the wave (drawn after [8].)

PRL 96, 088701 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
3 MARCH 2006
interface are P1 and P2, symmetry implies P1 � �P2 and
the continuity and interface equations become

@�
@t
�
@�

@z
; (3)

m
@2�

@t2
� �

@�
@t
� �� � P2 � P1 � 2P2; (4)

where � is the BM displacement normal to the interface.
Equation (4) assumes that the BM and associated cells
have been flattened to an interface that has mass m, damp-
ing �, and stiffness � (which can change along the spiral)
and that there is no appreciable axial elastic coupling
between adjacent regions [9].

We examine the equations in a spiral orthogonal coor-
dinate system (r; �; z). The distance between a fixed origin
and the spiral duct midline is described by a curve Rm���
that slowly decreases with traversed angle �, while r and z
are the horizontal and vertical distance, both measured
from the duct midline Rm��� and normal to it. The velocity
potential is written in terms of an axial wave numberK and
input frequency !, as

��r; �; z; t� � �0�r; �; z�e
i�!t�

R
�

0
K���Rm���d��; (5)

where �0 is a slowly varying function of the angular
coordinate �. The axial, transverse, and radial velocities
are given in terms of this potential, respectively, as

V� �
1

Rm � r
@�

@�
� �

iKRm
Rm � r

�;

Vz �
@�

@z
; Vr �

@�

@r
:

(6)

The solution to Laplace’s equation for the potential �,
subject to the no-flux condition through the duct bottom
located at z � �H, allows �0 to take the separated form

�0��; r; z� � A���C���r� Rm�� cosh���z�H�� (7)

where C is a cylinder function satisfying
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�
R2 d

2

dr2 � R
d
dr
��2R2 � K2R2

m

�
C��R� � 0; (8)

R � r� Rm, and � is the separation constant. In the
frequency domain, the momentum, continuity, and inter-
face conditions (2)–(4) become

P2 � �i�!�; (9)

i!� �
@�

@z
� �A���C���r� Rm�� sinh��H�; (10)

2P2 � ���m!
2 � i!���: (11)

From the above equations we get the intermediate relation

�H tanh��H� �
2H�!2

��m!2 � i!�
(12)

which, together with (19), will form the dispersion relation.
Simple solutions of � can be obtained for low enough
frequencies. Assuming negligible CP damping (� � 0),
and for small values of the parameter �H (set �H � �	
1) Eq. (12) is written as

�2H2 

2H�!2

��m!2 	 1: (13)

The above inequality may be rewritten as !2 	 �
2�H�m

which gives the low frequency upper bound. Clearly, this
bound is the square of the natural frequency of the local
BM oscillator which has a local stiffness of � and mass
equal to the BM mass m, plus the mass of the underlying
and overlying fluid, 2�H per unit length. This is a critical
parameter in cochlear mechanics since any given fre-
quency propagates only up to, and has a maximum ampli-
tude near, the axial location with the same natural
frequency. Therefore, the low frequency solutions of the
dispersion relation are relevant for all frequencies that
propagate to the apical end of the duct.
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At low frequencies, the cylinder function C��R� can be
found by expanding Eq. (8) for small values of � and
satisfying the no-flux boundary conditions Cr � 0 at the
side walls, located at distance rw from the center line (side
walls at R � Rm � rw and R � Rm � rw). For � � �H
and � � R

H we set

C��R� � C���� � F0��� � �2F1��� � � � � ; (14)

KRm � k0 � �k1 � � � � ; (15)

and find that, to O�1� F0 � 1 and k0 � 0, while, for higher
order

F1 � �
1
4�

2 � 1
2k

2
1�log��2 � B log�; (16)

k2
1 �

�2
2 � �

2
1

2 log��2=�1�
(17)

where

B �
�2

1 log�2 � �2
2 log�1

2 log��2=�1�
; (18)

�1 � �Rm � rw�=H and �2 � �Rm � rw�=H. Note that the
first term of the expansion of log��1=�2� for small rw=Rm is
log�Rm � rw=Rm � rw� 
 2rw=Rm. This, in turn, gives
k1 
 Rm=H, and therefore

K 
 �; (19)

i.e., the wavenumber is unaffected by curvature.
The wave amplitude A��� of the potential function is

computed from energy flow conservation along the duct
which considers pressure� horizontal velocity amplitude,
calculated over the duct cross section, is constant:

Z rw

�rw

Z 0

�H
jPjjV�jdzdr � const (20)

Substituting pressure and velocity from (9) and (6) the
energy conservation law becomes

KRm
Z rw

�rw

Z 0

�H

�
�2

0

r� Rm

�
dzdr � const (21)

We substitute �0 from (7), into Eq. (21) and assume that
for small �H, cosh���� �H�� 
 1, so that we get

KRmA���2H
Z rw

�rw

C2���r� Rm��
r� Rm

dr � const: (22)

We evaluate the above by approximating C���r� Rm�� 

F0 � 1, and for small �H assuming sinh��H� 
 �H.
Assuming further that rw=Rm is small and using (10) and
(19) we solve for the wave amplitude �:

��r; �� � 	�3=2H1=2r�1=2
w C���r� Rm�� (23)

where 	 is a constant. We set 
 � 	�3=2�H=rw�1=2 and
calculate, for small rw=Rm and rw 
 H:
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�out � �in

2rw
�



2rw
fC���Rm � rw�� � C���Rm � rw��g


 	
�7=2r2

w

2

1

Rm
(24)

Equation (24) indicates that the BM-fluid interface gets
tilted across the width of the partition, and the radial
amplitude slope varies as 1=Rm. The 1=Rm dependence
carries over when comparing the amplitude difference
between outside and inside walls, to the amplitude �str of
a wave propagating in a straight duct

�out � �in

�str
� �2r3

w
1

Rm
: (25)

As the wave propagates along the BM, its wavelength �
becomes shorter, and thus � 
 K � 2�=� increases.
Therefore, Eqs. (24) and (25) show that increased values
of� towards the apex further increase the radial amplitude
tilt. This tilt can also be thought of as contributing a
dynamic rotation to the BM, which displaces radially the
sensory hair cells’ upper surface, located at a distance L
above the BM, by

L
��=�2rw�

�


�2r2

w

2

L
Rm



2�2r2
w

�2

L
Rm

(26)

also varying as 1=Rm. As an example, in the human ear, a
frequency of 200 Hz has a wavelength � 
 4 mm [4], hair
cell-BM distance L � 0:15 mm, rw � 0:5 mm and, as-
suming that at the apex Rm 
 rw, the radial displacement
per unit of BM displacement is about 0.2. This is compa-
rable to measurements at the apex by Fridberger et al. [10].
The computed value may, in fact, be larger for the more
realistic anatomy of a (radially) increasing L. Since the
surface spanning the hair cell tops (reticular lamina) is, at
rest, at an angle to the BM, the rotational kinematics of the
BM movement could further enhance the radial displace-
ment of the reticular lamina.

Another anatomical simplification in the model was that
of a BM width equal to the duct width. A realistic apical
BM position and width within the duct was considered in
Refs. [3,11] who report a significant apical radial pressure
gradient at Rm. While those models cannot predict a BM
tilt, they can predict the radial pressure gradient at Rm,
which is proportional to BM tilt in the present model.
Calculations show that the gradient, as calculated in
Ref. [11] is about 25% less than that of the current model.

Our findings are also consistent with our finite element
model of cochlear micromechanics [12]. That model in-
cludes the anatomically realistic cross-sectional micro-
structure and shows that curvature greatly improves shear
gain, a measure of hair bundle shearing sensitivity, at the
BM’s low frequency region. How accurate is the effect we
are reporting? While the asymptotic analysis was carried
out assuming a small �, the � we use, i.e., �H 
 2�

� H is
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FIG. 3. A stream of rays spanning the channel entry progres-
sively focuses on the outer boundary as they travel inwards along
the spiral. Inset shows rays focusing on the outer 1=3 of the
duct’s width.

FIG. 2. Wave amplitude, computed from the energy conserva-
tion law (22) gets progressively tilted as the wave travels from
the cochlear base (midline assumed at radial distance Rm � 25)
to the cochlear apex (Rm � 3:7). The wave amplitude along the
spiral length is shown in a straight box, rather than the coiled
duct, to show the effect more clearly. rw is the distance of the
sidewall from Rm. The amplitude increases on the outside (rw �
0:5) wall and decreases on the inside (rw � �0:5) wall in the
propagation direction.
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not so small, and for a wavelength � 
 4 mm and H �
0:5 mm, �2 
 0:6. However, when we computed the wave
number [from Eq. (12)] and amplitude numerically we
found it to be in good agreement to our analytical approxi-
mation. In particular, the computations show that our main
result, that wave amplitude tilt varies as 1=Rm, holds for
such larger values of �, and the computed tilt is shown in
Fig. 2. Our computations also indicate that the restriction
!2 	 �

2�H�m , can be relaxed for larger values of !.
What is then a simple, intuitive explanation of the radial

wave amplitude tilt? One might attribute it to the quadratic
centripetal acceleration term, but this is neglected in our
linear analysis. We explain energy density redistribution by
drawing an analogy between wave energy density and the
density of a pencil of rays propagating along a spiral duct.
Ray redistribution would correspond to energy density
redistribution which, in turn, would affect the wave ampli-
tude tilt. In a constant radius of curvature duct, rays main-
tain their distribution near the outer wall, as in St. Paul’s
whispering gallery. In the spiral duct, the decreasing radius
of curvature continuously concentrates the rays near the
outer boundary, and thus the equivalent wave energy den-
sity gets continuously redistributed towards the outside
wall as the wave spirals inwards. The effect is clearly
seen in Fig. 3. Rays focus near the outside wall because
curvature increases slowly. By doing so, two things are
achieved: (i) after a number of reflections, a ray will
eventually reflect only off the outer wall, and (ii) as a ray
propagates inwards, the angle subtending two subsequent
reflection points will stay approximately constant. A cord
of a larger circle will be further away from its correspond-
ing arc than a cord that is subtended by an equal angle but
on a smaller circle; i.e., smaller radii of curvature force
rays to ‘‘get closer’’ to the outer wall, where ray density
becomes greater.
08870
The analysis of our present model allows for quantifica-
tion of the amplification. If � and rw do not vary signifi-
cantly along the spiral, we calculate that the ratio of the
wave tilt at the apex to tilt at the base is

��apex

��base



Rmbase

Rmapex

: (27)

A decrease in radius from the outside of the spiral to the
inside by a factor of 10 would then represent a 20 dB
amplification due to curvature alone.
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