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We report on the spatiotemporal dynamics of the interface in shear-banding flow of a wormlike micellar
system (cetyltrimethylammonium bromide and sodium nitrate in water) during a start-up experiment.
Using the scattering properties of the induced structures, we demonstrate the existence of an instability of
the interface between bands along the vorticity direction. Different regimes of spatiotemporal dynamics of
the interface are identified along the stress plateau. We build a model based on the flow symmetry which

qualitatively describes the observed patterns.
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Many complex fluids of various microstructures strongly
exhibit nonlinear properties under simple shear flows.
When the characteristic times of the flow (~1/7) and of
the system are similar, the system is liable to undergo
instabilities and flow-induced phase transitions. Such cou-
pling between flow and structure has been observed, for
example, in wormlike micellar solutions [1], lyotropic
lamellar phases [2], telechelic polymer networks [3], soft
glassy materials [4], or foams [5].

For a system showing a shear-thinning behavior, the
mechanical signature, in the measured flow curve [0 =
f(¥)], of this type of phenomena is the stress plateau
separating low and high viscosity branches. This stress
plateau is at the origin of a shear-banding transition from
a flow at first homogeneous towards a stationary state
where two layers supporting different shear rates coexist.
A change of the applied shear rate only affects the relative
proportion of each layer, the width of the induced band
increasing linearly with the macroscopic shear rate [6].

Among the complex fluids with stress plateau, the sys-
tems of reversible giant micelles have been the object of
the most intensive surveys (see [1] for a review). Very
recently, the use of dynamic light scattering to measure
velocity profiles brought confirmation of the very simple
shear-banding scenario previously mentioned for the
widely studied CPCl/NaSal solution [7]. However, the
authors mention the existence of temporal fluctuations in
the highly sheared band. More complex pictures have also
emerged with the development of time and spatially re-
solved techniques such as rapid nuclear magnetic reso-
nance (NMR) velocimetry [8] and ultrasonic velocimetry
[9], with, for example, the observation of periodic or
quasirandom oscillations of the interface position driven
by wall slip. Moreover, the flow birefringence, technique
sensitive to molecular alignment, revealed complex ki-
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netics of banding formation, and strongly differing banding
organizations from one sample to another [10].

Some of these behaviors are reproduced, at least quali-
tatively, by several theoretical works, which predict fluc-
tuating or chaotic flows, taking into account a coupling
between flow and microstructure via the concentration or
the micellar length [11]. They also motivated a recent
theoretical work, in which the author, using the nonlocal
Johnson-Segalman model, studies the stability of planar
shear banded flow with respect to small perturbations with
wave vectors in the interfacial plane [12]. An interfacial
instability is predicted in the plateau domain for almost all
shear rates, the interface profile being then modulated by a
wave with wave vectors confined along the flow direction.
In the present Letter, we report on the formation kinetics of
the banding structure and follow particularly the spatio-
temporal dynamics of the interface between bands for a
sample of cetyltrimethylammonium bromide (CTAB) and
sodium nitrate (NaNOj;) [13]. Direct visualizations of the
gap of the Couette cell in the plane (vorticity, velocity
gradient) and variations of the shear stress are recorded
simultaneously during a start-up experiment. Using the
scattering properties of the induced structures, we show
that the interface between the two bands becomes unstable
with the wave vector in the vorticity direction. Different
patterns of spatiotemporal dynamics of the interface are
observed, depending on the applied shear rate. Using argu-
ments based on the symmetry of the flow, we show that the
interface position is described by a generic amplitude
equation of Kuramoto-Sivashinsky type, which reproduces
qualitatively the observed patterns [14,15]. The wormlike
micellar system chosen in this work is made of CTAB at
11% wt. and NaNO; (0.405 M) in distilled water at T =
30 °C. At this concentration, far from the transition con-
centration towards an orientated nematic phase at rest, the
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FIG. 1 (color online). (a) Steady-state flow curves obtained un-
der controlled strain rate (O, 250 s per data point) and controlled
shear stress (A, 48 s per data point). The dotted lines point out
the bounded characteristic values of ¥ and o associated with the
stress plateau. (b) Variation of the shear stress versus time after
the onset of flow for applied shear rates y = 10 s™! and y =
30 s~!. The inset shows the response on a shorter time scale.

micelles form a highly entangled network. The linear
viscoelastic behavior of the solution is Maxwellian with
a plateau modulus G, = 238 = 7 Pa and a terminal relaxa-
tion time 7, = 0.15 £ 0.02 s. The rheological measure-
ments are performed on a stress-controlled rheometer
(Physica MCR500) working in strain-controlled mode. A
home-built transparent Couette cell with a height of 40 mm
is used for the experiments. The inner rotating cylinder has
a radius R; = 13.33 mm providing a gap thickness e =
1.13 mm. The Couette cell is designed in a way which
allows the direct observation of the gap in the plane (vor-
ticity, velocity gradient). We form a thin laser sheet in that
plane with a cylindrical lens and record the scattered
intensity at 90° with a CCD camera.

The steady-state rheological behavior of our sample in
strain- and stress-controlled modes of the rheometer is
drawn in the semilogarithmic plot in Fig. 1(a). The flow
curve is composed of two increasing branches separated by
a stress plateau extending from y;, =7 = 0.5 s ' to ¥, =
140 = 10 s™!, characteristic of the emergence of hetero-
geneous flow of shear-banding type. This plateau presents
a significant positive slope partly due to the nonhomoge-
neity of the Couette geometry. In fact, the curvature effects,

z (cm) e=1.13 mm

L1s 2.5

analyzed as in [7] do not allow for a complete explanation
of the slope. Concentration effects between shear bands
could also make the plateau steeper [16].

We shall now focus on the kinetics of formation of the
heterogeneous flow. At r = 0, a shear rate is applied to the
sample initially at rest and the evolution of the shear stress
and direct observations of the gap of the Couette cell in the
plane (vorticity, velocity gradient) are recorded simulta-
neously as a function of time until steady state is achieved.
Figure 1(b) illustrates the variations with time of the shear
stress for two shear rates associated with the plateau region
(7 = 7,). The stress o(t) follows the generic behavior
observed on various semidilute micellar systems [10,17]
undergoing shear-banding transition induced by the flow:
an overshoot at short times, then a slow sigmoidal relaxa-
tion (7 = 10 s™!) or damped oscillations (7 =30 s~ 1),
and finally a small undershoot that continues the transient
response towards the stationary state.

Let us correlate such an evolution with the direct visual-
izations of the gap (Fig. 2). The sample at rest does not
present any particular scattering properties as observed on
the first photo (¢t = 07) where the gap appears dark. Just
after the inception of flow, the solution becomes turbid
over the entire gap and strongly scatters the incident light
in all directions. This strong increase of the turbidity is
associated with the elastic overshoot in the shear stress
response (see photo 1). The entangled micellar network is
strongly stretched, leading to concentration fluctuations.
Then, the liquid becomes transparent again near the fixed
wall of the Couette cell (photo 2), this phenomenon cor-
responding to the rapid relaxation of the stress overshoot.
Let us note, however, that the turbidity does not relax all
over the gap since a scattering band persists against the
rotating inner cylinder, the interface between bands being
diffused (photo 4). The crucial point here, is that the
induced structures are nucleated during the stress over-
shoot and in all the gap of the cell so that the induced
band is already formed just after the stress overshoot. The
enhancement of the concentration fluctuations acts as the
precursor of the transition. Both bands have differing
optical properties: the induced band is very turbid, indicat-
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FIG. 2. Views of the gap in the plane velocity gradient/vorticity taken out from the recording of the scattered intensity at different
instances during the formation of the induced band. The sample is subjected to a shear rate of 30 s™!. The letters A and B indicate,
respectively, the inner and outer cylinders of the Couette device. Because of the compromise between the spatial resolution and the size
of the field of observation, this latter is limited to 1.5 cm in height and centered at halfway of the cell.
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ing that it contains structures of mesoscopic size which
scatter the light in all directions. Such a difference allows
us to perfectly distinguish the interface between bands. Let
us note that the turbidity is associated with birefringence
banding. From ¢ = 10 s the interface becomes clearly
sharp (photo 5). This lasts for about t = 20 s (photo 6)
and then we observe a completely unexpected behavior:
the sharp interface between the two bands begins to desta-
bilize itself along the vorticity axis. The instability grows
up to ¢ = 29 s (photo 9), namely, when the stress under-
shoot occurs in the transient response. Beyond, the inter-
face seems to adopt a stationary periodic profile with a
well-defined characteristic wavelength. An extension of
the field of observation shows that this ripple of the inter-
face spreads over all the height of the inner cylinder. At the
edges of the cylinder, the ripple presents a minimum of
amplitude.

This destabilization process of the interface occurs in all
the plateau region of the flow curve. In a general way, the
wavelength and the amplitude of the instability clearly
increase with the applied shear rate, except when y ap-
proaches 7y, where they diminish again. Let us note that
above 7y, the gap is completely filled by the induced band.
Using a simple procedure of image analysis, we detect the
interface profile on each frame. We represent in gray
levels, the amplitude of the interface as a function of
time and space coordinates along the vorticity axis as
illustrated in Figs. 3(a) and 3(b), where we summarized
the complete behavior of the interface on spatiotemporal
diagrams for y = 10 s™! and y = 30 s™!, respectively. In
the first approximation, we adjust the interface profile by a
sinusoidal function in order to estimate the wavelength and
the amplitude of the instability. The observed patterns are
very different for both the applied shear rates. At 10 s™!,
the deformation of the interface occurs around # = 20 s
and the waves formed seem to propagate along the z
coordinate, alternatively towards the top and the bottom
of the cylinder, interacting in a complex scenario. We find
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FIG. 3. Spatiotemporal evolution of the interface amplitude for
y=10s"1 (a) and y =30s"! (b) on a time scale which
provides both kinetics of destabilization of the interface and
the asymptotic behavior. The z coordinate gives the spatial
position along the vorticity axis. A linear gray scale (in um)
is used, the black and white regions being associated, respec-
tively, with the minima and maxima of the interface amplitude.

for the amplitude and the mean wavelength, respectively,
0.007 = 0.003 and 0.4 = 0.1 mm. The evolution at y =
30 s~ ! appears simpler since there is no propagation in this
case. The interface keeps a spatially stable profile in the
course of time with an amplitude of 0.05 = 0.01 mm and a
wavelength of 2.4 = 0.02 mm, namely, more than 2 times
the gap width. We checked by increasing the duration of
the experiment up to 40 min that there is no coarsening
between the “domains” (black and white) at very long
times. A closer inspection of the diagram reveals the ex-
istence of time-periodic oscillations. We can distinguish
two different frequencies: the first one, in the dark zones, is
due to the mechanical imperfection intrinsic to the rheom-
eter; the second one, which is visible in the clear zones, is
lower and results from the superposition of the default of
coaxiality of the cell with a “beat” of the minimum of
amplitude of waves. In other words, the amplitude of the
interface instability oscillates with time. This could be due,
among others, to tridimensional flow or to destabilization
of the interface in the velocity direction [12].

Moreover, from the asymptotic behavior we are able to
deduce the proportion of the induced “phase” ¢;: the
integration of the interface profile gives ¢; = 0.29 =
0.02. The same calculus for each photo from ¢ = 10 s gives
the same relative proportion. According to the simplest
shear-banding scenario described by Cates’s theory [6]
and recently observed by Salmon et al. [7], the width of
the induced band increases linearly with the applied shear
rate. In our case, the proportion of the induced band
computed from the lever rule seems to be underestimated:
for y=10s""! and y =30 s™!, we find, respectively,
¢, =0.02£0.01 and ¢, = 0.18 £0.02, values to be
compared to 0.04 = 0.01 and 0.30 = 0.02. Processing of
ultrasonic data on this sample is in progress in order to
properly correlate the optical response and the local struc-
ture of the flow.

We would like to propose a simple model that captures
the asymptotic dynamics of the fluid flow. As stated pre-
viously, when the fluid is forced with a shear rate that is
inside the plateau region, the system spontaneously coarse
grains into two zones separating two different shear rates.
Here, as in lubrication approximation for Newtonian fluids,
gradients with respect of the transversal coordinate y are
higher than those with z as the coordinate tangential to the
cylinder axis. This length scales difference yields that the
dynamics with respect to the z coordinate are slow, and will
consequently drive the interface position for asymptotic
times. Let us denote p the position of the interface sepa-
rating these two zones. Temporal evolution of the front
must reflect the symmetry of the experiment z — —z, so
only terms including spatial derivatives like d,p, 9,.,.p,
and (9,p)? are allowed at lowest order. The system is not
invariant with respect to translation in the y direction, and
the equation must present the broken symmetry: p — p +
const. The asymptotic dynamics of the interface are given
by
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FIG. 4. Spatiotemporal evolution of the interface position p
obtained by numerical simulation of the model 1 with
(a) o = 0.07 (b) » =0.2.

a,p = /-‘v(1 - P) — 0P~ 0P T (azp)z- (1)

Equation (1) is written in nondimensional variables, and
introduces the control parameter w in which all the physi-
cal attributes of the experiment have been set. The first
term of the right-hand side of the Eq. (1) just states that the
interface has a stationary location. Since the fluid is set into
negative viscosity inside the plateau, the second term is a
diffusion term with a negative sign. The nextterm, 9, p is
a linear saturating term. The last term is the first nonlinear
term that respects the symmetry at that order. This equation
is known as the damped Kuramoto-Sivashinsky equation
[18]. When w > 1/4 the solution p = 1 is a linearly stable
solution. For u < 1/4, the perturbed interface becomes
oscillatory in space, with a well-defined wavelength.
Finally, for pu < 0.078, the dynamics are chaotic [18],
see, for example, Fig. 4(a). When u = 0, Eq. (1) reduces
to the usual Kuramoto-Sivashinsky equation, and exhibits
complex spatiotemporal behavior that is used to describe
phase turbulence [19]. The existence of the stationary
periodic pattern observed in the experiment is related to
the very low aspect ratio of the Couette cell. Let us finally
note that, in the model, when the interface becomes un-
stable, its position is systematically shifted due to the
nonlinear term (9, p)>. This term has the same effect as
the curvature of the Couette geometry. This means that the
instability of the interface could also explain the ‘“‘addi-
tional” slope of the plateau.

In summary, our rheo-optical study of the interfacial
dynamics in shear-banding flow reveals the existence of a
destabilization process of the interface between bands with
a wave vector in the vorticity direction. This observation
suggests that the flow field is three dimensional with the
presence of recirculations. We show that there are different
spatiotemporal dynamics of the interface along the stress
plateau, with chaotic events at low shear rates, and spa-
tially stable oscillatory behavior at higher strain rates. The
physical origin of the destabilization process is still to be
determined, however, it could partly explain some fluctu-
ating behaviors highlighted recently in shear banded flows
[7-9] and it emphasizes the necessity for a complete
spatiotemporal description of the flow and the microstruc-
tural organization in the different planes. Further, we build

a model Eq. (1) based upon symmetry arguments which
described qualitatively the observed complex patterns.
This model equation can also be derived using perturbation
theory. To this end, it is necessary to adopt a model for the
rheology of the fluid [12,20]. It is a computation that we
did using the model [20] and we will report it elsewhere
[21] with the complete exploration of the stress plateau.

The authors are grateful to G. Grégoire, O. Greffier, O.
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