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Coupling Hydrophobicity, Dispersion, and Electrostatics in Continuum Solvent Models
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An implicit solvent model is presented that couples hydrophobic, dispersion, and electrostatic solvation
energies by minimizing the system Gibbs free energy with respect to the solvent volume exclusion
function. The solvent accessible surface is the output of the theory. The method is illustrated with the
solvation of simple solutes on different length scales and captures the sensitivity of hydration to the
particular form of the solute-solvent interactions in agreement with recent computer simulations.
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Much progress has been made in the last decade in the
understanding of hydrophobic solvation on different length
scales [1,2]. Most of this work has been devoted to study
solvation of purely repulsive, hard-sphere-like solutes,
while less attention has been given to the influence and
incorporation of dispersion or electrostatic contributions.
Likewise, an entire field in the biophysical community has
explored electrostatic solvation effects in the absence or
uncoupled addition to hydrophobic considerations; see,
e.g., [3] for a review. Recently, however, several computer
simulations have demonstrated a strong coupling between
hydrophobicity, solute-solvent dispersion attractions, and
electrostatics. For example, simulations of explicit water
between platelike solutes revealed that hydrophobic at-
traction and dewetting phenomena are strongly sensitive
to the nature of solute-solvent dispersion interactions [4,5].
Similarly, simulations of hydrophobic channels [6,7] and
nanosolutes [8] have shown that electrostatic potentials
strongly affect the dewetting behavior and potentials of
mean force (pmf). A fully atomistic simulation of the
folding of the two-domain protein BphC enzyme [9] fur-
ther supported coupling by showing that the region be-
tween the two domains was completely dewetted when
solvent-solute van der Waals (vdW) and electrostatic in-
teractions were turned off, but accommodated 30% of the
density of bulk water with the addition of vdW attractions,
and 85%–90% with the addition of electrostatics, in ac-
cord with experimental results. Finally, Liu et al. recently
observed a dewetting transition in the collapse of the
melittin tetramer, which was strongly sensitive to the
type and location of the hydrophobic residues proving
that these observations apply to realistic biomolecular
systems [10].

In this Letter we propose a continuum description of
solvation that explicitly couples hydrophobic, dispersion,
and electrostatic contributions. We express the Gibbs free
energy as a functional of the solute cavity shape, the latter
given by the volume exclusion function of the solvent [11],
and obtain the optimal shape by minimization. This leads
to an expression similar to the Laplace-Young equation for
the geometrical description of capillary surfaces [12], but
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in contrast to existing approaches explicitly includes the
inhomogeneous distributions of dispersion and electro-
static contributions as well as curvature corrections.
Geometry-based approaches similar to our formalism exist
in related fields, such as the Helfrich description of mem-
branes shapes [12], wetting in colloids and granular media
[12], and electrowetting [13]. We stress that, as opposed to
other implicit solvent models, the solvent accessible sur-
face (SAS) is an output of our theory. We begin by verify-
ing that our method is able to describe the solvation of
small alkanes on molecular scales. We then demonstrate
that it captures the strong sensitivity of dewetting and
hydrophobic hydration to solute-solvent interactions on
larger scales for a model system of two alkane-assembled
spheres. In this striking example the strong hydrophobic
attraction decreases almost 2 orders of magnitude in units
of the thermal energy, kBT, and dewetting is partially or
completely suppressed when realistic dispersion and elec-
trostatic contributions are included. We expect our ap-
proach to be particularly useful in solvation studies of
proteins, where the hydrophobic surfaces are highly irregu-
lar and laced with hydrophilic units [1,10] and superhy-
drophobic nanosolutes [15].

Let us consider an assembly of solutes with arbitrary
shape and composition surrounded by a dielectric solvent
in a macroscopic volume W . We define a subvolume V
empty of solvent for which we can assign a volume exclu-
sion function in space given by v� ~r� � 0 for ~r 2 V and
v� ~r� � 1 elsewhere. We assume that the surface bounding
the volume is continuous and closed. The absolute volume
V and interface area S of V can then be expressed as
functionals of v� ~r� via V�v� �

R
W d3r�1� v�~r�� and

S�v� �
R
W d3rj ~rv� ~r�j, where ~r � ~r~r is the usual gra-

dient operator. The density distribution of the solvent is
either zero or �0 defined by �� ~r� � �0v�~r�, where �0 is the
bulk density of the solvent at fixed temperature and pres-
sure. The solutes’ positions and conformations are fixed.

We suggest expressing the Gibbs free energyG�v� of the
system as a functional of v� ~r� and obtaining the optimal
volume and surface via minimization �G�v�=�v�~r� � 0.
We adopt the following ansatz for the Gibbs free energy:
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G�v� � PV�v� �
Z
W
d3r�� ~r�j ~rv� ~r�j �

Z
W
d3r�� ~r�U�~r�

�
�0

2

Z
W
d3rf ~r�� ~r�g2��~r�: (1)

The first term in (1) is the energy of creating a cavity in the
solvent against the difference in bulk pressure between the
liquid and vapor, P � Pl � Pv. The second term describes
the energetic cost due to solvent rearrangement close to the
cavity surface in terms of a parameter �� ~r�. This interfacial
energy penalty is thought to be the main driving force for
hydrophobic phenomena [1]. �� ~r� is not only a solvent
specific quantity but also depends on the topology of the
surface in a nonlocal way [16]; i.e., it is a functional of the
volume exclusion function, �� ~r� � ��r; �v��. The exact
form of this functional is not known. For planar macro-
scopic solvent-cavity interfaces �� ~r� is usually identified
by the liquid-vapor surface tension, �lv, of the solvent,
which we also employ here. Furthermore, we make a local
curvature approximation; i.e., we assume that ��~r� can be
expressed solely as a function of the local mean curvature
of the cavity interface, �� ~r� � ��H� ~r��, with H�~r� �
��1�~r� � �2� ~r��=2, where �1 and �2 are the two principal
curvatures. We then apply the first order curvature correc-
tion to �lv given by scaled-particle theory [17], the com-
monly used ansatz to study the solvation of hard spheres,
arriving at

�� ~r� � �lv�1� 2�H� ~r��; (2)

where � is a constant and positive length expected to be of
the order of the solvent particle size [17]. The curvature is
positive or negative for convex or concave surfaces, re-
spectively. Note that this leads to an increased surface
tension for concave surfaces. It has been shown by simu-
lations that (2) predicts the interfacial energy of growing a
spherical cavity in water rather well for radii * 3 �A [18].

The third term in (1) is the total energy of the non-
electrostatic solute-solvent interaction given a density dis-
tribution �0v� ~r�. The energy U�~r� �

P
iUi�~r� ~ri� is the

sum of the short-ranged repulsive and long-ranged attrac-
tive dispersion interactions Ui between each solute atom i
and a solvent molecule. Classical solvation studies typi-
cally represent Ui as an isotropic Lennard-Jones (LJ) po-
tential, ULJ�r� � 4����=r�12 � ��=r�6�, with an energy
scale � and a length scale �. The importance of treating
dispersion interactions independently, as opposed to ab-
sorbing them into the surface tension term, has been
emphasized by Gallicchio et al. in their study of cyclic
alkanes [19].

The fourth term in (1) describes the total energy of the
electrostatic field expressed by the local electrostatic po-
tential �� ~r� and the position-dependent dielectric constant
�� ~r� assuming linear response of the dielectric solvent. The
electrostatic potential � is evaluated by Poisson’s equa-
tion, ~r 	 ���~r� ~r�� ~r�� � ��� ~r�=�0, where �� ~r� is the sol-
ute’s charge density distribution. The most common
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approximation for �� ~r� is proportional to the volume ex-
clusion function v� ~r� [3]

�� ~r� � �v � v� ~r���l � �v�; (3)

where �v and �l are the dielectric constants inside and
outside the volume V , respectively.

Plugging in (2) and (3) in functional (1) and using the
calculus of functional derivatives, the minimization yields

0 � P� 2�lv�H�~r� � �K� ~r�� � �0U�~r�

�
�0

2
� ~r��~r��� ~r��2

�
1

�l
�

1

�v

�
: (4)

Equation (4) is a partial second order differential equation
for the optimal solvent accessible volume and surface ex-
pressed in terms of pressure, surface curvatures, dispersion
interactions, and electrostatics, all of which have dimen-
sions of force per surface area or energy density. K� ~r� �
�1� ~r��2� ~r� is the Gaussian curvature and follows from the
variation of the surface integral over H� ~r� in (1). Thus, in
our approach the geometry of the surface, expressed by H
and K, is directly related to the inhomogeneous dispersion
and electrostatic energy contributions. Note that the SAS is
presently defined with respect to the LJ centers of the
solvent molecules.

In the following we illustrate solutions of (4) in spherical
and cylindrical symmetries. For a spherical solute (4)
reduces to a function of R, the radius of the solvent
accessible sphere, H � 1=R and K � 1=R2. In cylindrical
symmetry the SAS can be expressed by a one-dimensional
shape function r�z�, where z is the coordinate on the
symmetry axis and r the radial distance to it. The surface
in three-dimensional space is obtained by revolving r�z�
around the z axis. The principal curvatures are then given
by �1 � �1=�r

���������������
r02 � 1
p

� and �2 � r00=��r02 � 1�3=2�,
where the primes indicate the partial derivative with re-
spect to z. We solve (4) and Poisson’s equation numeri-
cally, using standard forward time relaxation schemes.

We now study the solvation of methane and ethane in
water and compare our results to the simple point charge
(SPC) explicit water simulations by Ashbaugh et al. [20],
in which the alkanes are modeled by neutral LJ spheres
[21]. We fix the liquid-vapor surface tension for SPC water
at 300 K to �lv � 65 mJ=m2 [18]. Since we deal with
water under ambient conditions, the pressure term can be
neglected and the length � remains the only free parameter.
For methane we can reproduce the simulation solvation
energy �G with a fit � � 0:85 �A. This is in good agree-
ment with Huang et al. [18] who measured � � 0:76

0:05 �A for SPC water. Solving the cylindrically symmetric
problem for the diatomic ethane with the same � �
0:85 �A, we obtain a fit-parameter-free �G � 11:40 kJ=
mol, which is only 7% larger than the simulation results.
Alternatively, the best fit � � 0:87 �A reproduces the simu-
lation energy exactly. This is surprisingly good agreement
given the crude curvature correction we apply and the fact
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that the large curvature of the system varies locally in
space. This supports the validity of our continuum ap-
proach down to a molecular scale. The curvature and shape
functions H�z�, K�z�, and r�z� are plotted in Fig. 1 together
with the vdW surface and the canonical SAS obtained from
rolling a probe sphere with a typically chosen radius rp �
1:4 �A over the vdW surface [14]. Away from the center of
mass jzj * 1 �A the curvatures follow the expected trends
H ’ 1=R and K ’ 1=R2 with R ’ 3:1 �A for the spherical
surfaces. The surface resulting from our theory is smaller
than the canonical SAS, and is smooth at the center of mass
(z � 0) where the canonical SAS has a kink. Thus, our
surface has a smaller mean curvature at z � 0 and an
almost zero Gaussian curvature, which is typical for a
cylinder geometry for which one of the principal curva-
tures is zero. These results may justify the use of smooth
surfaces in coarse-grained models of closely packed hydro-
carbon surfaces, a possibility we now explore with solva-
tion on larger length scales where dewetting effects can
occur.

Let us consider two spherical solutes that we assume to
be homogeneously assembled of CH2 groups with a uni-
form density � � 0:024 �A�3 up to a radius R0 � 15 �A,
defined by the maximal distance between a CH2 center and
the center of the solute [22]. The integration of the
CH2-water LJ interaction over the volume of a sphere
yields a 9-3-like potential for the interaction between the
center of the paraffin sphere and a water molecule [23].
The intrinsic, nonelectrostatic solute-solute interaction
Uss�r12� in a center-to-center distance r12 can be obtained
in a similar fashion. The solvation of the two solutes is
studied for a fixed surface-to-surface distance, which we
define as s0 � r12 � 2R0. We obtain an effective SAS
radius of one sphere of about R ’ R0 � 2:4 �A so that the
effective surface-to-surface distance is roughly s ’ s0 �

4:8 �A. Since we are also interested in the effects of charg-
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FIG. 1 (color online). Mean H�z� and Gaussian K�z� curvature
and shape function r�z� (solid lines) for ethane. The canonical
SAS (dashed line) from rolling a probe sphere with radius rp �
1:4 �A over the vdW surface (shaded region) is also shown.
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ing up the solutes we place opposite charges
Ze, where e
is the elementary charge, in the center or on the edge of the
two spheres.

In the following we focus on a separation distance of
s0 � 8 �A to investigate the influence of different contribu-
tions to the energy functional on the shape function, r�z�,
and the curvatures, K�z� andH�z�. For s0 � 8 �A, it follows
that s ’ 3:2 �A, such that two water molecules could fit
between the solutes on the z axis. We systematically
change the solute-solute and solute-solvent interactions,
as summarized in Table I. We begin with only the LJ
repulsive interactions in system I and then add a curvature
correction with � � 0:75 �A, vdW attractions, and sphere-
centered charges Z � 4 and Z � 5 in systems II–V, re-
spectively. To study the influence of charge location, we
reduce the magnitude of each charge in system VI to Z � 1
and move them to the edge of the spheres on the symmetry
axis such that they are 8 Å apart (indicated by arrows in
Fig. 2). The surface tension and dielectric constant of the
vapor and liquid are fixed to �lv � 72 mJ=m2, �v � 1, and
�l � 78, respectively.

The results for the curvatures and r�z� for systems I–VI
are shown in Fig. 2. Away from the center of mass
(jzj * 10 �A), systems I–VI show very little difference.
The curvatures are H ’ 1=R and K ’ 1=R2 with R ’
17:4 �A. Close to the center of mass (z ’ 0), however, the
influence of changing the parameters is considerable. In
system I, Eq. (4) reduces to the minimum surface equation
H�z� � 0 for z ’ 0. For two adjacent spheres the solution
of this equation is the catenoid r�z� / cosh�z�, which fea-
tures zero mean curvature (�1 and �2 cancel each other)
and negative Gaussian curvature. This leads to a vapor
bubble bridging the solutes. When curvature correction is
applied (system II), the mean curvature becomes nonzero
and negative (concave) at z ’ 0, while the Gaussian curva-
ture grows slightly more negative. As a consequence, the
total enveloping surface area becomes larger and the sol-
vent inaccessible volume shrinks; i.e., the value of r�z ’ 0�
decreases. Turning on solute-solvent dispersion attrac-
tion amplifies this trend significantly as demonstrated
by system III. Mean and Gaussian curvatures increase
fivefold, showing strongly enhanced concavity, and the
volume empty of water decreases considerably, expressed
TABLE I. Studied systems for two alkane-assembled spherical
solutes. If r�z � 0� � 0 the system is ‘‘dewetted.’’ In VI the
solutes’ charge is located off-center (OC) at the solute surface.

System � (Å) vdW attraction Z W�s0�=kBT Dewetted

I 0.00 no 0 �57:6 yes
II 0.75 no 0 �34:1 yes
III 0.75 yes 0 �6:3 yes
IV 0.75 yes 4 �9:2 yes
V 0.75 yes 5 �5:1 no
VI 0.75 yes 1 (OC) �1:3 no
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FIG. 2 (color online). Mean H�z� and Gaussian K�z� curva-
tures and shape function r�z� for two alkane-assembled solutes
of radius R0 � 15 �A (shaded region) for systems I–VI. The
position of the charges Z � 
1 in VI are indicated by arrows.
Curvatures are not shown for the ‘‘wet’’ systems V and VI.
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by r�z � 0� ’ 10:7 �A dropping to r�z � 0� ’ 6:3 �A. These
trends continue with the addition of electrostatics in
system IV. When the sphere charges are further increased
from Z � 4 to Z � 5 (system IV! V), we observe a
wetting transition: the bubble ruptures and the SAS jumps
to the solution for two isolated solutes, where r�z ’ 0� � 0.
The same holds when going from III to VI, when only one
charge, Z � 1, is placed at each of the solutes’ surfaces.
Importantly, this demonstrates that the present formalism
captures the sensitivity of dewetting phenomena to specific
solvent-solute interactions as demonstrated in previous
studies [4–10]. Note that the SAS at jzj ’ 2 �A is closer
to the solutes in VI compared to V due to the proximity of
the charge to the interface. Clearly, the observed effects, in
particular, the transition from III to VI, cannot be described
by existing solvation models, which use the SAS [14], or
effective surface tensions and macroscopic contact angles
[12] as input.

The significant change of the SAS with the solute-
solvent interaction has a strong impact on the pmf,
W�s0� � G�s0� �G�1� �Uss�s0�. Values of W�s0 �

8 �A� are given in Table I. From system I to VI the total
attraction between the solutes decreases almost 2 orders
of magnitude. Interestingly, the curvature correction
(I! II) lowers W by a large 23:5kBT, even though R�
�. A striking effect occurs when vdW contributions are
introduced (II! III): the intersolute attraction decreases
by ’ 28kBT while the dispersion solute-solute poten-
tial, Uss�s0 � 8 �A�, changes by only �0:44kBT. Simi-
larly, adding charges of Z � 5 (III! V) at the solutes’
centers or Z � 1 (III! VI) at the solutes’ surfaces de-
creases the total attraction by 1:2kBT and 5kBT, respec-
tively. Note that the total attraction decreases although
electrostatic attraction has been added between the solutes.
The same trends have been observed in explicit water
08780
simulations of a similar system of charged hydrophobic
nanosolutes [8].

These results clearly demonstrate that solvation effects
and solvent mediated phenomena are not only strongly
influenced by solute-solvent interactions, but that these
interactions are inherently coupled. By including coupling,
our formalism captures the balance between hydrophobic,
dispersive, and electrostatic forces, which has been ob-
served in previous studies [4–10] but never described in
a single theoretical framework. Nonpolar and polar cou-
pling is expected to be crucial for a complete characteriza-
tion of biomolecular solvation. The present formalism is
limited only by the crude curvature and dielectric descrip-
tions currently employed. Future efforts to improve these
approximations are critical to accurately describe solvation
effects on multiple length scales and for more complicated
geometries.
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