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By applying the recently developed nonperturbative functional renormalization group (FRG) approach,
we study the interplay between ferromagnetism, quasi-long-range order (QLRO), and criticality in the
d-dimensional random-field O�N� model in the whole �N; d� diagram. Even though the ‘‘dimensional
reduction’’ property breaks down below some critical line, the topology of the phase diagram is found
similar to that of the pure O�N� model, with, however, no equivalent of the Kosterlitz-Thouless transition.
In addition, we obtain that QLRO, namely, a topologically ordered ‘‘Bragg glass’’ phase, is absent in the
3-dimensional random-field XY model. The nonperturbative results are supplemented by a perturbative
FRG analysis to two loops around d � 4.
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How the phase behavior and ordering transitions of a
system are affected by the presence of a weak random field
remains in part an unsettled problem. Heuristic and rigor-
ous arguments show that the lower critical dimension,
below which no long-range order is possible, is 2 for the
random-field (RF) Ising model [1,2] and 4 for models with
a continuous symmetry [RFO�N�M, with N > 1] [1,3,4].
However, this leaves aside two questions: first, the nature
of the critical behavior in random-field models, a question
connected to the breakdown of the so-called ‘‘dimensional
reduction’’ (DR) property that relates the critical exponents
of the RFO�N�M to those of the pure O�N� model in two
dimensions less [5] and, second, the possible occurrence of
a low-temperature phase with quasi-long-range order
(QLRO), i.e., a phase characterized by no magnetization
and a power-law decrease of the correlation functions, in
models with a continuous symmetry [6,7]. Progress has
been made to better circumscribe this latter point. It has
indeed been shown that QLRO is absent for N � 2 when
disorder is strong and for N > 3 for an arbitrarily weak
random field [8], but this still keeps open the cases N �
2; 3 in the physical dimensions d � 2; 3.

Those questions are important because, on top of purely
theoretical motivations, they concern the behavior of the
known experimental realizations of random-field models.
This is the case, for instance, of vortex lattices in disor-
dered type-II superconductors [7,9]. In such systems, the
randomly pinned lattice of vortices can be mapped onto an
‘‘elastic glass model’’ [7,9], whose simplest realization is
the N � 2 RFXYM. The occurrence of a phase with
QLRO, termed ‘‘Bragg glass,’’ has been predicted for the
3� d version of the model [7]. Further theoretical support
for this prediction has been given by a Monte Carlo simu-
lation of the RFXYM [10] and by analyses of the energetics
of dislocation loops [7,11].

In this Letter, we apply our recently developed non-
perturbative functional renormalization group (FRG) ap-
proach of the RFO�N�M [12] to provide a unified picture of
06=96(8)=087202(4)$23.00 08720
ferromagnetism, QLRO, and criticality in the whole (N, d)
diagram. We find that below a critical value Nc � 2:83 . . .
and for d < 4 the model has a transition to a QLRO phase,
both this phase and the transition being governed by zero-
temperature nonanalytic fixed points (FPs). The transition
disappears below a lower critical dimension, which we find
around 3.9 for N � 2. Therefore, contrary to what is usu-
ally believed, no QLRO and no Bragg glass phase exist in
the 3� d RFXYM. We supplement our nonperturbative,
but of course approximate, results by a perturbative FRG
analysis to two loops in d � 4� �. The present approach
allows us to discuss the DR property and its breakdown.
We find, in particular, that the topology of the (N; d) phase
diagram of the RFO�N�M is similar to that of the pure
O�N� model, with, however, no equivalent of the (N � 2,
d � 2) Kosterlitz-Thouless (KT) transition.

Our starting point is the standard effective Hamiltonian
for the RFO�N�M in d dimensions with an N-component
field ��x� and uncorrelated random fields taken from a
Gaussian distribution with zero mean and variance �.
After introducing n replicas in order to perform the average
over quenched disorder (taking at the end the limit n! 0),
it can be rewritten as:
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where we have introduced sources acting on each replica
separately, which therefore explicitly break the permuta-
tion symmetry between the replicas.

We apply in this work the nonperturbative FRG for-
malism recently proposed by us for the RFO�N�M [12].
To keep the presentation short but sufficiently self-
contained, we first sketch the main steps of the approach.
It is based on an exact RG equation for the effective
average action �k�f�ag�. �k interpolates between the bare
2-1 © 2006 The American Physical Society
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FIG. 1. Predicted phase diagram for (a) the RFO�N�M (non-
perturbative FRG) and (b) pure O�N� model (sketch). Regions I
and II correspond to transitions to a ferromagnetic and a QLRO
phase, respectively.
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action, Eq. (1), and the usual effective action [i.e., the
Legendre transform of the partition function associated
with Eq. (1)] as the running scale k moves from the micro-
scopic (k � �) to the macroscopic (k! 0) scale. It is built
by integrating out fluctuations with momenta larger than k,
and its flow obeys an exact equation

@t�k�f�ag��
1
2Trf@tRk�q���

�2�
k �f�ag;q��1Rk�q���1g; (2)

where @t is a derivative with respect to t � ln�k=��, ��2�k is
the tensor formed by the second functional derivatives of
�k with respect to the fields �a�q�, 1 is the unit tensor, and
the trace involves an integration over momenta as well as a
sum over replica indices and N-vector components. Rk�q�
is the infrared cutoff introduced to suppress the low-
momentum modes. In practice, solving Eq. (2) numerically
requires the introduction of approximation schemes which
amount to truncating the functional form of �k. Guided by
the physics of the problem at hand and by the mounting
work on the method [13], one can then formulate a non-
perturbative RG description. For the RFO�N�M, we have
argued that the two main ingredients allowing study of the
long-distance physics are (i) the derivative expansion,
which approximates the momentum dependence of the
(1PI) vertex functions [13], and (ii) the expansion in in-
creasing number of free replica sums, which is equivalent
to include increasing-order cumulants of the renormalized
distribution of the quenched disorder [12].

The simplest nonperturbative FRG description of the
RFO�N�M relies on the following truncation:
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with one single wave function renormalization for all
fields, Zm;k, evaluated at the field configurations that mini-
mize the 1-replica potential Uk (pseudo-first-order deriva-
tive expansion [13]); the 1-replica Uk and 2-replica Vk
parts of the effective potential are obtained from �k taken
for uniform fields. Inserting Eq. (3) into Eq. (2) leads to
coupled partial differential equations for the functions
Uk�~�� and Vk�~�; ~�0; z�, where ~� � 1

2�
2 and z �

� ��0=
��
�

p
4~�~�0�, and to a running anomalous dimension

defined as �k � �@t logZm;k. The sought FPs being at zero
temperature, one also introduces a running temperature Tk
and the associated exponent �k � @t logTk. This is most
conveniently done by defining a renormalized disorder
strength �m;k � �2~�m;k�

�1@zVk�~�m;k; ~�m;k; z � 1�, where
~�m;k corresponds to the minimum of Uk�~��. Defining
then Tk as Zm;kk

2�=��2�m;k�, one can see that it reduces
to the bare temperature T at the microscopic scale �.

The flow equations can be expressed in a scaled form by
introducing renormalized dimensionless quantities,
uk��� � Tkk

�dUk�~��, vk��; �
0; z� � T2

kk
�dVk�~�; ~�0; z�,
08720
� � Zm;kTkk��d�2� ~�: see Eqs. (5, 6) in Ref. [12]. An ex-
pression for �k is derived by considering the flow of the
transverse component of d=dq2��2�k �q

2� evaluated for uni-
form fields and zero momentum:
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where C�1
d � 2d�d=2��d=2�, u��, vz, and v��0 stand, re-

spectively, for @2
�u, @zv, and @�@�0v evaluated for fields

that minimize uk (the subscript k has been dropped for
simplicity), and md

p;p0 �w;w
0� are dimensionless threshold

functions described in Ref. [13]. In Eq. (4), we have set for
clarity Tk � T � 0, but the same FPs are reached when
T > 0, provided (as indeed found) that � � �k!0 > 0. As
discussed previously [12], breakdown of DR is associated
with the appearance of a strong enough nonanalyticity in
the renormalized 2-replica potential as the two replica
fields become equal. This behavior is related to the pres-
ence of metastable states in the renormalized random
potential generated along the RG flow.

We have numerically integrated the flow equations for
uk, vk, and �k for a variety of initial conditions and
determined in this way the FPs and the associated stability
behavior (and critical exponents �, �� � 2� �� �, and
for once unstable FPs, �). To cover the whole �N; d�
diagram for continuous values of N and d with a tractable
computational effort, we have used an additional approxi-
mation that consists in expanding uk and vk around the
field configuration �m;k: uk�u2����m;k�

2, vk�v00�s��
v10�s��� � �0 � 2�m;k� � v20�s��� � �0 � 2�m;k�

2 �

v02�s�����0�2, where s � ��� �0 � 2
��������
��0

p
z�=2. One

should point out that the present flow equations reproduce
all 1-loop perturbative results in the appropriate region of
the �N; d� plane, including the FRG equation at first order
in � � d� 4 [12].

The central results of our study are summarized on the
phase diagram displayed in Fig. 1(a). In region III, there
are no phase transitions; the RFO�N�M always stays dis-
ordered. In region I, there is a transition to a ferromagnetic
phase at a critical point governed by a zero-temperature
nonanalytic FP. The nonanalyticity is strong enough (a
2-2
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‘‘cusp’’) for breaking the DR predictions for the critical
exponents; however, when approaching a critical line
Nc;DR�d� (not shown here, but starting from N � 18 for
d � 4� � and going to d ’ 5 when N � 1 [12]), the
critical exponents continuously tend to their DR value.
Above the line, the stable (more precisely, once unstable)
FP is nonanalytic, but the singularity now only affects the
corrections to scaling. (FPs with a cusp can still be found,
but they are unstable in several directions and correspond
therefore to multicritical points, unreachable from generic
initial conditions.)

Finally, in region II, we find two zero-temperature non-
analytic FPs: One is attractive and describes a QLRO
phase, and the other one is once unstable and governs the
transition between the disordered and the QLRO phases.
The exponents� characterizing the power-law decay of the
connected correlation function for the QLRO phase and the
transition are shown in Fig. 2 for a range of values of N.
One can see that, for N less than a critical value Nc �
2:83 . . . and for d < 4, which corresponds to region II, the
two FPs coalesce for a value dlc�N� which then determines
the lower critical dimension below which no phase tran-
sition is observed. The most striking outcome is that,
contrary to what is usually believed, no QLRO, i.e., no
Bragg glass phase, exists in d � 3 for the RFXYM: indeed,
dlc�N � 2� ’ 3:9. Our study of the RG flow for d � 3 and
N � 2 shows signatures of a pseudo-FP [14], presumably
lying on the imaginary axis not too far from the physical
plane of coupling constants (which could explain the be-
havior found in Monte Carlo simulation [10]; see Fig. 3),
but the flow goes at large distance to the trivial disordered
FP. We shall come back to this point later. Note that an
estimate of the uncertainty of the present nonperturbative
but approximate RG treatment is given by considering the
point in Fig. 1(a) for d � 2: In this (probably most unfav-
orable) case, the theory predicts Nlc ’ 1:15 instead of the
exact result Nlc � 1. As shown for the pure O�N� model
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FIG. 2. Prediction for the d dependence of the anomalous
dimension � for different values of N (by steps of 0.2). Below
Nc � 2:83 . . . and for d < 4 two nontrivial FPs (QLRO and
transition), each characterized by an exponent �, appear; they
coalesce for d � dlc�N� (dots).
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[15], this could be improved by solving the full first order
of the derivative expansion.

It is instructive to contrast the behavior of the RFO�N�M
with that of the pure model. The phase diagram of
this latter, derived from the solution of phenomenological
RG equations [16] and from known exact results, is shown
in Fig. 1(b). Regions I, II, and III are the exact counterparts
of those in Fig. 1(a). Indeed, and although never men-
tioned, QLRO exists in the pure model even aside from
the special KT transition for N � 2 and d � 2. However, it
occurs in an unphysical region, 1<N < 2, 1< d< 2. It
remains that the topology of the RFO�N�M phase diagram
is very similar to that of the pure model. Again, there is no
exact DR-like property, the lower critical dimension dlc�N�
being shifted by an N-dependent value between the two
models.

Another intriguing question raised by this similarity is
the possible equivalence between the (Nc � 2:83 . . . , d �
4) point of the RFO�N�M and the (Nc � 2, d � 2) point of
the pure model [compare Figs. 1(a) and 1(b)]. Our non-
perturbative FRG solution of the former shows a behavior
very reminiscent of the KT transition, but the approxima-
tion used is unable to rigorously locate a line of FPs as
would occur for a KT transition [13,17]. To resolve this
matter, we have considered the perturbative FRG analysis
around d � 4. The 1-loop � function(al) for the renormal-
ized 2-replica potential (to which our nonperturbative
treatment exactly reduces near d � 4) can be set to zero
in d � 4 when N � Nc � 2:83 . . . for arbitrary values of
the disorder strength, much like it does in the pure d � 2
XY model for arbitrary values of the temperature; but what
about the 2-loop � function? To answer this question, we
have calculated (independently from the authors of the
recent Ref. [18]) the � functions of the RFO�N�M around
d � 4 to 2 loops, starting with the nonlinear-sigma model
associated with Eq. (1). The calculation follows the treat-
ment developed for the pure model [19], with the bare
action expressed in terms of renormalized dimensionless
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FIG. 3. Inverse correlation length vs disorder strength for the
3� d RFXYM (arbitrary units). The crossover around � � 5 is
the remainder of the FPs found above dlc. � parametrizes the
initial conditions of the RG flow and 1=	 is estimated as in
Ref. [14].
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quantities,
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where the (N � 1)-component fields �a characterize the
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potential that we seek to relate to the bare term
R0�z� � �z via the counterterms ��R�, such that R0 �
k4�d�R� ��R��. We then carry out the perturbation expan-
sion around the Gaussian theory characterized by the
propagator G�0���ab �q�� tZTk2�d�Z�q2�Z1=2

� ZTh=
a��1	
������

�
a ��a��ab, where �; � � 1; . . .N � 1. The rele-

vant interaction vertices are obtained by taking up to six
functional derivatives of the action with respect to the �a
fields. They involve derivatives of R, i.e., functions of z. To
handle the resulting functional diagrams, we have followed
the method developed for the FRG of disordered elastic
systems [20]. Calculations are quite intricate and will be
reproduced elsewhere.

The final expression for the T � 0 � function for R�z�
can be put in the form @tR�z� � R0�1���r� � R0�1�	
��r�z� � R0�1��1�r� � R

0�1�2�2�r��, where � � 4� d,
R0�1� is the renormalized disorder strength, and r�z� �
R�z�=R0�1�; the 1-loop �1�r� is given in Refs. [12,21] and
the 2-loop contribution reads

2�2�r� � y�yr000 � 3zr00 � r0�2��yr00 � zr0 � 1�

� �N� 2��y2r003� y�3zr0 � y� 3�r002

� 2y�r0 � z�r0r00 � yr02� 4r�

� a2��N� 2�yr00 � �3N� 2�zr0 � 8K�N� 2�r�;

where y � 1� z2 and a � lim�z!1���1� z2�1=2r00�z�. One
can check that, with the change of variable z � cos
 and
with K � 2�a, the above equation is identical to the result
recently obtained by Le Doussal and Wiese [18]. As ex-
pected, DR is recovered by setting the ‘‘anomalous’’ term a
to zero. The coefficient K in the above expression is left so
far as an unknown: It requires additional calculations (in
progress) in order to fully determine the 2-loop � func-
tions. However, its value is not needed to answer the above
question, i.e., to know if for Nc � 2:83 . . . and d � 4 the �
function for R�z� can vanish identically to two loops for
arbitrary disorder strength R0�1�. This latter property is true
only if both�1�r� and �2�r� vanish identically for the same
function r�z�. One can check that this is impossible, irre-
spective of the value of K. We can thus conclude that the
special point (Nc � 2:83 . . . , d � 4) does not correspond
to a KT transition. Actually, as also obtained in our non-
08720
perturbative approach [see Fig. 1(a)], the only FP found for
the (Nc, d � 4) model is at zero renormalized disorder
strength, which allows a perturbative analysis of the two
nonanalytic fixed points for d < 4 and N <Nc [18].

One further consequence of the absence of a KT tran-
sition is that, contrary to what occurs in the pure model
near (N � 2, d � 2), the line of lower critical dimension
approaches the (Nc, d � 4) point with an infinite slope
[compare Figs. 1(a) and 1(b)]. This reinforces our finding
that d � 3 is safely below the lower critical dimension of
the RFXYM. Whether or not this conclusion implies that
no Bragg glass phase should exist in disordered high-Tc
superconductors is, however, an open question. The map-
ping from these latter to the RFXYM is valid only at low
disorder where an essentially elastic description can be
used [22]. It may well be that the mechanism by which
QLRO is destroyed in the RFXYM, a mechanism that does
not explicitly invoke the presence of dislocations, is spe-
cific to that model.

LPTMC is CNRS UMR 7600.
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