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We evaluate the current distribution for a single-electron transistor with intermediate strength tunnel
conductance. Using the Schwinger-Keldysh approach and the drone (Majorana) fermion representation,
we account for the renormalization of system parameters. Nonequilibrium effects induce a lifetime
broadening of the charge-state levels, which suppress large current fluctuations.
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The ‘‘full counting statistics’’ (FCS) of charge transport
has proven to be a powerful tool in the description of
current fluctuations [1]. The concept had been explored
by Levitov and Lesovik [2], who expressed the FCS of an
arbitrary mesoscopic structure with noninteracting elec-
trons in terms of its S matrix. Much less is known about
the FCS of interacting mesoscopic systems, a problem
which has been addressed only recently [3–7].

As a fundamental example of interacting mesoscopic
systems, we consider a single-electron transistor (SET).
It consists of a metallic island coupled to source and drain
(left and right) electrodes via low-capacitance tunnel junc-
tions, with resistances RL and RR, as well as to a gate
electrode. The strength of the Coulomb interaction is char-
acterized by the charging energy EC � e2=2C�, which
depends on the total capacitance between the island and
the electrodes, C� � CL � CR � CG. A measure for the
tunneling strength is the dimensionless parameter �0 �
�RL � RR�=2�e2RLRR (we put @ � kB � 1).

In Refs. [3,4], the FCS of a similar system—a quantum
dot—has been studied, fully accounting for strong electron
correlations, however, only for a particular setup and pa-
rameters, corresponding to the Toulouse point. A renor-
malization group (RG) approach had been developed for
the regime �0 � 1 [5]. In the opposite limit �0 ! 0, the
FCS has been analyzed to lowest order in tunneling in
Ref. [6] and next-to-lowest order (cotunneling) in
Ref. [7]. The intermediate conductance regime �0 & 1
has not been covered before. It is particularly interesting
since it provides the unique opportunity to realize the
nonequilibrium multichannel Kondo physics [8]. The aim
of this Letter is to derive the FCS for a SET in this regime.

Let us further specify the situation to be considered. At
low transport voltages and temperatures, eV; T � EC, due
to a Coulomb blockade, tunneling is suppressed in a SET,
everywhere except near specific values of the gate voltage,
e.g., near QG � CGVG � e=2. In the neighborhood of this
conductance peak, the Coulomb barrier is �0 � EC�1�
2QG=e�. For �0 � 1, electrons tunnel via the island se-
quentially only when �R <�0 <�L, where �L=R �
06=96(8)=086803(4)$23.00 08680
�L=ReV is the voltage drop between the L=R electrode
and the island, and �L=R � 	CR=L�CL � CR��1. With in-
creasing �0, higher order effects such as cotunneling and
quantum fluctuations of the charge gain importance [9].
They lead to a renormalization of �0 and �0. The pertur-
bative RG analysis [8] (for eV � 0) predicts a renormal-
ization factor z0 � 1=f1� 2�0 ln�EC=��g to depend
logarithmically on the cutoff energy � � maxf�0; Tg.

The model.—We concentrate on the tunneling regime
with inverse RC time 1=RTC� � 4��0EC smaller than
EC, which ensures that the charge-state levels are well
resolved. In the vicinity of the conductance peak, precisely
for j�0j=EC � 1, it is sufficient to restrict attention to two
charge states with charges differing by e. The Hamiltonian
can then be mapped onto the ‘‘multichannel anisotropic
Kondo model’’ [8]. Introducing a spin-1=2 operator �̂
acting on the charge states, we write

Ĥ �
X

r�L;R;I

X
kn

"rkâ
y
rknârkn �

1

2
�0�̂z

�
X
r�L;R

X
kk0n

�Trâ
y
Iknârk0n�̂� � H:c:�: (1)

Here âyrkn creates an electron with wave vector k and
channel index (including spin) n in the left or right elec-
trode or island (r � L;R; I). Tunneling matrix elements Tr
are assumed to be independent of k and n. The junction
conductances are 1=Rr � 2�e2NchjTrj2�I�r, with Nch

being the number of channels and �r the electron density
of states. We assume that energy and spin relaxation times
are fast, and electrons obey Fermi distribution.

A convenient tool to treat the spin-1=2 operators in
Eq. (1) is the ‘‘drone’’ (Majorana) fermion representation
[10] �̂� � ĉy�̂, �̂z � 2ĉyĉ� 1, where �̂ � d̂y � d̂ is a
Majorana fermion and ĉ and d̂ are Dirac fermions. This
formulation enables one to apply Wick’s theorem and the
fermionic Schwinger-Keldysh approach [11,12].

Cumulant generating functional.—The central object of
our approach is the generating functional of connected
Green’s functions (GFs)
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R
C
dtL�t�: (2)

Here L is the Lagrangian corresponding to Ĥ (1), and
fermion operators switched to Grassmann variables for
the functional integral (see Ref. [13] for details). The
closed time path C (Keldysh contour) runs from t � �1
to1, back to�1, and connects to the imaginary time path
to end at t � �1� i=T. We introduce auxiliary source
fields, the phase of the tunneling matrix element Tr !
Tre

i�r’�t�, distinguishing between forward and backward
time paths ’��t� and ’��t�. The ‘‘center-of-mass’’ vari-
able’c�t� � f’��t� � ’��t�g=2 � eVt is then fixed by the
transport voltage.

From the cumulant generating functional (CGF), one
finds the number of transmitted electrons q during the mea-
surement time t0, W ��� �

P
1
n�1hh	q

nii�i��n=n!. Follow-
ing Ref. [12], it is derived from Eq. (2) by fixing during the
measurement the ‘‘counting field’’ (relative variable)
’��t� � ’��t� � ’��t� at a constant value �:

W ��� � iW
’�j’c�t��eVt;’��t���
�t0=2�t�
�t0=2�t�: (3)

The distribution of q (or, equivalently, of the current I �
eq=t0) is given by the inverse Fourier transformation

P �
1

2�

Z �

��
d�eW ����iq�  eW �����i�t0I=e��� : (4)

The integral can be evaluated in saddle point approxima-
tion, with �� following from the relation I �
�ie@�W ����=t0 [6]. This approach is valid for long mea-
surement times since W is proportional to t0 (see below).

We proceed following Ref. [13], where a conserving
approximation for the second cumulant had been devel-
oped. Tracing out the electron degrees of freedom leads to
an effective action for the c and d fields, S� � Sch � S

�
t ,

composed of a charging and a tunneling term:

Sch �
Z
C
dtfc�t���i@t ��0�c�t� � id�t�

�@td�t�g; (5)

S�t � �
Z
C
dtdt0c��t���t����t; t0���t0�c�t0� �O�T4

r �: (6)

Here �� � ��L � �
�
R is a particle-hole GF describing tun-

neling of an electron from one electrode to the island. It
depends on the counting field. The connection to the
ordinary GF is established by a rotation by �r � �r� in
the Keldysh space as follows:

~��
r �!��U

y
�r

~�r�!�U�r; ~�r�!��
0 �Ar �!�

�Rr �!� �Kr �!�

� �
; (7)

where U�r � exp��i�r�1=2� and 
�1�ij � 1� 	ij. The
retarded and advanced components are given by

�Rr �!� � �Ar �!�� � �i��r0
�!��r�E

2
C

�!��r�
2 � E2

C

;

where �r0 � 1=2�e2Rr, and the Keldysh component by
�Kr �!� � 2�Rr �!� coth�!��r�=2T. We introduced a
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Lorentzian cutoff to regularize the ultraviolet divergence
and ignored the term O�T4

r � in the action (6), since it is
small in the limit Nch � 1.

The free retarded GF of the Dirac fermion ĉ, gRc �!� �
1=�!� i�� �0�, describes the dynamics of charge exci-
tations (� is a positive infinitesimal). The corresponding
self-energy ��

c � ��
L � ��

R accounts for quantum fluctua-
tions of the island charge caused by tunneling. Integrating
out d fields, we obtain the components of the self-energy in
first order in �0:

�K
r �!��2�Rr �!�; �R

r �!��
Z d!0

2�
i�Kr �!

0�

!� i��!0
: (8)

(For simplicity, we present here only the result for � � 0.)
For a symmetric SET (RL � RR, CL � CR), at T � 0 and
j!j � eV, one finds �R

c �!�  �0 ln�2EC=eV�!� i�=2,
where � � �IL � �LI � �IR � �RI is the sum of the rates
�rI=Ir � 	�1=e

2Rr���0 ��r�=�e
	��0��r�=T � 1� describ-

ing tunneling into (out of) the island through the junction
r, evaluated by Fermi’s golden rule.

We can proceed in a systematic diagrammatic expansion
in �0 [13]. To lowest order, one obtains for the CGF:
W 
1���� � �

R
C dtdt

0gc�t; t0���
c �t0; t�. We project the

time from contour C to the real axis and observe that, for
long enough measurement times, we can approximate
	t0�!� �

Rt0=2
�t0=2 dte

�i!t=2� by a 	 function, 	t0�!� !
	�!�, and �	t0�!��

2 ! t0	�!�=2�. The latter ensures
that any closed diagram, and, consequently, W , is propor-
tional to t0. After Fourier transformation, we obtain

W 
1�����t0
Z
d!Trf~gc�!��1

~��
c �!��1g=2�

� t0
X
r�L;R

fP��rI�e
i�r�1��P��Ir�e

�i�r�1�g:

Here we used the expression for the Keldysh component of
a c-field GF, gKc �!� � 2i ImgRc �!��P� � P��, which con-
tains equilibrium occupation probabilities of the charge
states QG and QG � e: P	 � 1=�e	�0=T � 1�.

At this point, we note that the naive first order expansion
W 
1� is insufficient. First, it contains the equilibrium
occupation probabilities rather than the stationary ones.
Second, due to charge conservation, the CGF should de-
pend only on the difference of the counting fields �L �
�R � � [14], which is also violated. These problems are
resolved if we sum up an infinite subclass of diagrams.
Specifically, we sum up the geometric series in
�~gc�1

~��
c�1�, which contains the leading logarithms, i.e.,

powers of �0 ln�2EC=eV�,

W ��� � t0
Z d!

2�
Tr ln
~gc�!�

�1 � �1
~��
c �!��1�

� t0
Z d!

2�
ln
1� TF�!�fL�!�hR�!��ei� � 1�

� TF�!�fR�!�hL�!��e�i� � 1��: (9)
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FIG. 1 (color online). Current distribution P of a symmetric
SET [T � 0 and eV=EC � 0:2]. (a) Solid lines are plots of P for
various values of �0 [Eq. (9)]. The dashed lines represent the
orthodox theory [Eq. (11)], and the dotted-dashed line represents
the cotunneling expansion [Eq. (13)]. The inset shows the
average current for the same parameters. (b) Plot of P at �0 �
0 for various values of the conductance versus the current
normalized to V=2�RL � RR�; inset: the same distribution nor-
malized to the average current hIi. (c) The skewness and
(d) kurtosis for various conductances derived from Eq. (9) (solid
lines) and the sum of Eqs. (11) and (12) (dashed lines).
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Here fr�!� � 1=�e�!��r�=T � 1�, hr�!��1�fr�!�, and

TF�!� � ��KL �!��
K
R �!�=j!� �0 � �R

c �!�j
2: (10)

Note that we subtracted a constant from the CGF in order
to satisfy the normalization condition W �0� � 0.

Equation (9) is the main result of this Letter. It is similar
to the Levitov-Lesovik formula [2], but the effective trans-
mission probability (10) accounts for quantum fluctuations
of the charge. Using the condition Eq. (3), Eq. (9) can also
be obtained from an approximate W given in Eq. (25) of
Ref. [13]. Thus, the first and second cumulants hIi �
ehh	qii=t0 and SII � 2e2hh	q2ii=t0 reproduce the average
current [15] and zero-frequency noise [13].

Although we used only the first order expansion for the
self-energy, Eq. (9) is exact to second order in �0. One can
check that the diagrams ignored in Eq. (9) within second
order expansion, i.e., the diagrams with intersecting inter-
action lines, are proportional to �0=EC � 1. Higher order
terms of Eq. (9) generate the renormalization factor z0

consistent with the RG result [8]. They are crucial close
to the threshold of Coulomb blockade. In particular, they
remove the logarithmic singularities adherent to finite
order perturbation theory.

Limiting cases.—In the limit �0 ! 0, one can show,
following the derivation in Ref. [6], Sec. IV, that Eq. (9)
reproduces the result of the ‘‘orthodox’’ theory:

W �1���� � t0�

�����������
D���

p
� 1�=2; (11)

where D��� � 1� 4�LI�IR�e
i� � 1�=�2 � �L$ R; �!

���. The second order expansion in �0 reads

W �2���� � @�0
fRe�R

c ��0�W
�1����g �W cot���: (12)

The first term of this equation provides the renormalization
of the system parameters up to first order in �0. Namely,
the parameters are renormalized as �0 ! �0f1�
@�0

Re�R
c ��0�g and �0 ! �0 � Re�R

c ��0�. This agrees
with the corresponding results obtained earlier for the
average current [16]. It is also consistent with the recent
results of Braggio et al. [7]. We also checked that Eq. (12)
can be reproduced by the systematic real-time diagram-
matic expansion similar to that of Ref. [15].

The second term of Eq. (12) is the CGF of a bidirectional
Poissonian process

W cot��� � t0f�
��ei� � 1� � ���e�i� � 1�g; (13)

governed by the cotunneling rates

�	 �
Z
d!Re

2�e	�!��R�=T

�!� i�� �0�
2

Y
r�L;R

�r0�!��r�

e	�!��r�=T � 1
:

This term is relevant in the Coulomb blockade regime and
is consistent with the FCS of quasiparticle tunneling [17].

At the conductance peak �0 � 0, for a symmetric SET,
and T � 0, the orthodox theory yields W �1�  2 �q�ei�=2 �

1�, where e �q=t0 � V=2�RL � RR�. The factor ei�=2 leads to
a sub-Poissonian value of the Fano factor SII=2ehIi  1=2,
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indicating that tunneling processes are correlated. The
origin of this correlation can be understood from the ex-
plicit form of the distribution P�q� �

P
1
qL;qR�0 PP�qL� �

PP�qR�	q;�qL�qR�=2, obtained by inverse Fourier transfor-
mation of Eq. (4) without saddle point approximation.
The numbers of electrons transmitted through either junc-
tion, qL and qR, follow the same Poissonian distribution
PP�q� � �qqe� �q=q!. The Kronecker delta implies that qL
and qR are correlated.

With �0 approaching the threshold value �0=eV � 0:5,
the tunneling onto the island becomes the bottleneck
and the CGF acquires the Poissonian form W �1� 
t0�LI�ei� � 1�. It remains Poissonian in the cotunneling
regime, j�0=eVj> 0:5, W cot  t0�

��ei� � 1�.
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Let us compare our result (9) to the orthodox (11) and
the cotunneling (13) theories. The latter theories fail
around the threshold �0=eV � 0:5. For example, in the
average current, shown in the inset in Fig. 1(a), we observe
a mismatch between the predictions of the orthodox (dot-
ted line) and the cotunneling (dotted-dashed line) theories
since �LI ! 0 while �� ! 1. In contrast, our result (solid
line), derived from Eq. (9) behaves regularly [solid lines in
Fig. 1(a)]. It widens with increasing �0. The orthodox and
the cotunneling theories show the same trend but over-
estimate the width.

Renormalization and lifetime broadening effects.—For
large conductance, quantum fluctuations of the charge are
pronounced. However, as long as z0�� �, where � �
max�jz0�0j; 2�T; jeVj=2�, the orthodox CGF W �1� with
renormalized parameters z0�0 and z0�0 remains a good
approximation. This scenario may fail in the regime ��
TK � ECe�1=2�0=2�, where the approximation of leading
logarithms might be insufficient.

The renormalization effect is illustrated in Fig. 1(b),
where the current distribution at �0 � 0 is plotted. Since
z0 decreases with increasing �0, the mean value of the
current, i.e., a peak position, shifts to lower values. The
renormalization effect can be absorbed when we plot lnP
with the horizontal axis normalized by hIi rather than
V=2�RL � RR�. However, even after plotting the distribu-
tion as a function of the normalized current [inset in
Fig. 1(b)], the three curves do not collapse to a single
one. The remaining differences can be attributed to the
non-Markovian lifetime broadening effect as described by
Im�R

c . We observe that the current distribution shrinks
with increasing �0. This agrees with the previously noted
suppression of the Fano factor [13]. FCS provides further
information, showing in detail how the probability for
currents exceeding the average value is suppressed.

The effect of lifetime broadening is also visible in the
moments. At moderately large voltages, eV � TK, and at
T � 0, the real part of the self-energy �R

c is negligible
and �R

c �!�  �i��0eV. The CGF at �0 � 0 then is

W ���  2 �qf�ei�=2 � 1� � 2�0�e
i� � 1�

� �2�2
0�e

i3�=2 � ei�=2�=2�O��3
0�g; (14)

and the ratio of higher order cumulants to the first one be-
comes hh	qnii=hh	qii�21�nf1�4�0�2

n�1�1��O��2
0�g.

As �0 increases, higher order cumulants are suppressed
as compared to the Poissonian result 21�n.

Solid lines in Figs. 1(c) and 1(d) show the skewness
hh	q3ii and the kurtosis hh	q4ii as a function of �0. A
peak around the threshold develops with increasing con-
ductance. Clear deviation from the second order pertur-
bation theory, W �1� �W �2� the sum of Eqs. (11) and (12)
(dashed lines), appears for large �0 around the threshold.
We expect that the characteristic peak can be observed with
present-day experimental techniques [18].

In conclusion, we have derived the full counting statis-
tics for a single-electron transistor with intermediate
08680
strength conductance where quantum fluctuations of the
charge play a dominant role. They are taken into account
by the summation of a certain subclass of diagrams, which
corresponds to the leading logarithmic approximation in
the sense that the result is consistent with the RG analysis.
In first order in �0, our results reproduce the orthodox
theory, while in second order they account for non-
Markovian cotunneling effects, consistent with the recent
analysis of Braggio et al. We have shown that, in nonequi-
librium situations, quantum fluctuations of the charge in-
duce lifetime broadening for the charge states of the central
island. Consequences which can be detected in experi-
ments include a suppression of the probability of currents
larger than the average value.
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