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Doped Spin Liquid: Luttinger Sum Rule and Low Temperature Order
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We analyze a model of two-leg Hubbard ladders weakly coupled by interladder tunneling. At half filling
a semimetallic state with small Fermi pockets is induced beyond a threshold tunneling strength. The sign
changes in the single electron Green’s function relevant for the Luttinger sum rule now take place at
surfaces with both zeros and infinities with important consequences for the interpretation of angle-
resolved photoemission spectroscopy experiments. Residual interactions between electron and holelike
quasiparticles cause a transition to long range order at low temperatures. The theory can be extended to
small doping leading to superconducting order.
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While the properties of doped spin liquids in more than
one dimension are notoriously difficult to analyze, they are
nonetheless highly relevant. In one dimension the two-leg
Hubbard ladder at half filling is the spin liquid epitome and
as such ladder systems have attracted strong interest [for an
early review, see [1] ]. Powerful analytic techniques such as
bosonization and Bethe ansatz have been applied to single
ladders with weak interactions [see [2] and references
therein] and have led to comprehensive understanding of
both doped and undoped ladders. In this Letter we report
the extension of these results to higher dimensions through
the introduction of a small long range interladder tunneling
in an ensemble of uncoupled half-filled Hubbard ladders.
Increasing the tunneling amplitude leads to the formation
of closed electron and hole Fermi pockets. The Luttinger
sum rule (LSR) now takes on a novel form with the sign
changes in the one electron Green’s function appearing
both as zeros and infinities. This result has strong implica-
tions for the interpretation of ARPES results on under-
doped cuprates. In the pseudogap phase the experiments
interpret infinities as a set of disconnected Fermi arcs [3],
but do not (and cannot) observe the zeros. Lastly we
analyze possible instabilities of the carriers in the Fermi
pockets using interactions derived from the low energy
effective field theory for the ladders.

The dynamics of the component half-filled ladders in
our ensemble are governed at low energies by an effective
field theory. As demonstrated in [4], half-filled ladders with
generically repulsive interactions experience under renor-
malization an enhancement in the symmetry of the bare
Hubbard lattice Hamiltonian. With this enhancement, the
effective field theory for the ladder is the SO(8) Gross-
Neveu model, HSO�8� [4]. We couple the half-filled ladders
together by long range single-particle tunneling. The com-
plete Hamiltonian is then
X
i

HSO�8�
i �

X
i;i0

l;l0 ;n

t?ii0ll0
Z
dx�cynli��x�cnl0i0��x� � H:c:�; (1)

where cynli� creates an electron at the nth site on the lth leg
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(l � 1; 2) of the ith ladder. By making the hopping ampli-
tude long range, we acquire a small parameter, as was done
for a similar model of coupled Hubbard chains in [5]. We
assume the following hierarchy of energy scales:
W�bandwidth� � ��spectral gap� � t?. The first inequal-
ity guarantees that the ladders can be described using the
effective field theory. With its renormalization of interac-
tions, this theory is adiabatically disconnected from its
noninteracting counterpart.

The Gross-Neveu model is exactly solvable for all semi-
simple symmetry groups and a great deal is known about
its thermodynamics and correlation functions. In the SO(8)
case the correlation functions were studied in [6,7]. The
spectrum of this model consists of three octets of particles
of mass � and a multiplet of 29 excitons with mass

���
3
p

�.
Two octets consist of quasiparticles of different chirality
transforming according to the two irreducible spinor rep-
resentations of SO(8), while the third octet consists of
vector particles. The latter include magnetic excitations
as well as the Cooperon (a particle with charge �2e).
The 16 kink fields, carrying charge, spin, orbit, and parity
indices, are direct descendants of the original electron
lattice operators on the ladders. According to [6,7], the
single electron Green’s function is

G�0�a �!; kx� �
�
Za

�!� �a�kx��

!2 	 �2
a�kx� 	 �2 �Ga;reg

�
; (2)

where a � �; j with � spin and j � � indexing the
bonding-antibonding bands. �a�kx� is the bare band disper-
sion. There are no off-diagonal Green’s functions involving
electrons from opposite Fermi points, a result of right and
left moving quasiparticles belonging to different irreduc-
ible representations of the SO(8) group. As shown in [7],
the incoherent part of the Green’s function Ga;reg yields a
negligible contribution to the spectral weight and so the
quasiparticle weight satisfies Za 
 1.

RPA analysis.—We will study the properties of our
coupled ladders close to the Mott-Hubbard transition, fol-
lowing Ref. [5]. The interladder hopping is diagonal in the
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bonding-antibonding indices because of the bands’ differ-
ing Fermi wave vectors. A random phase approximation
(RPA) (diagrammatically pictured in Fig. 1) yields the
following expression for the full 2D Green’s function:

GRPA
a �kx;k?� �

�
�G�0�a �kx��	1 	 ta�k?�

�
	1
: (3)

In our model the interchain tunneling amplitude has strong
peaks at k? � 0;G=2, where G is the inverse lattice vector
in the direction perpendicular to the chains. [The peak at
G=2 follows from particle-hole symmetry, i.e., t?�k� �
	t?�k�G=2�.] Near these points the following expansion
is valid:

ta�k?��1�1�G=4���ta0�1	�k?�2=�2
0�����; (4)

where the dots stand for terms of higher order in jk?j=�0

and �0 
 G is the small parameter of the theory. We note
that t�0 > 0 while t	0 < 0.

The quasiparticle spectrum is given by

!	 �a�kx� 	 �2�!� �a�kx��	1 	 ta�k?� � 0: (5)

At this point we note that the RPA Green’s function (3)
together with (5) bear a remarkable resemblance to the
single electron Green’s function of underdoped cuprates
conjectured in [8] on phenomenological grounds. In both
cases the numerator of the self-energy is modified. In
contrast, for a conventional superconductor ta�k?� would
be expected to modify �a�kx�.

The dispersion relationships, Ea��k�, of the quasipar-
ticles are given from Eq. (5) by

Ea��k� � ta�k?�=2�
��������������������������������������������������������
��a�kx� � ta�k?�=2�2 � �2

q
:

(6)

The Fermi surfaces (FS) are determined by solving Ea� �
0. Doing so to leading order for k? near 0 and G=2 yields

�2�kx 	 kFa�vF � ta0�
2 � 2t2a0k2

?=�
2
0 � t2a0 	 4�2: (7)

Gapless excitations then only emerge when maxjta�k?�j>
2�. For �ta0 < 0, the FS pockets are electronlike, while
for �ta0 > 0, they are holelike. Now Ga

RPA � �!�
�a�k��=�!	 Ea��k���!	 Ea	�k��. Near the FS of the
pockets, �a�kx� � �� and Ea��k� � �ta0. The effective
quasiparticle weight can then be read off to be ZRPA � 1=2.
Thus RPA yields well-defined quasiparticles. We note that
Ref. [9] found a FS marked by similar pockets.

Luttinger sum rule.—The Green’s functions (2) and (3)
satisfy the Luttinger sum rule (LSR) in the form which,
though being well known theoretically, has had limited
applications. The LSR relates the electron density to the
= +

FIG. 1. The RPA equation for single-particle Green’s function
(thick line), GRPA

a . The double line is the hopping amplitude, ta,
while the thin line is the bare Green’s function G0.
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volume in momentum space in which G�! � 0;k�> 0.
This volume is bounded by the surface where G�! � 0;k�
changes sign [10]. The sign change can occur either at an
infinity of G�! � 0;k� (Fermi surface) or a zero
(Luttinger surface). The first possibility is denied for a
Mott insulator. For example, the Green’s function (2) at
! � 0 vanishes at kFa where �a�kFa� � 0, i.e., at momenta
where the noninteracting Green’s function had infinities. In
this way the LSR is satisfied for this nonperturbative ladder
ground state. In the presence of interladder tunneling, the
Green’s function (3) continues to have zeros at kFa inde-
pendent of the k? component (see Fig. 2). However, when
Fermi surface pockets appear, the Green’s function addi-
tionally changes sign through the newly formed infinities.
Electronlike pockets add and holelike pockets subtract
from the total electron density, but the LSR remains valid.
This example demonstrates, as does the case described in
[5], that in doped spin liquids it is generally necessary to
determine both the Fermi and Luttinger surfaces in order to
obtain the electron density from the LSR. It is important to
point out that the Luttinger surface, determined by the
zeros of the Green’s function, differs dramatically from
the surface of minimum gap (see Fig. 2). The latter is often
used in ARPES experiments to extrapolate to an under-
lying Fermi surface. This, however, leads to difficulties in
the pseudogap phase of underdoped cuprates where the
enclosed area manifestly exceeds one electron per unit cell,
inconsistent with hole doping [e.g., see [11] ].

Instabilities and doping dependence.—As was demon-
strated in [5], the RPA solution may become unstable at
low temperatures. The instability is driven by the residual
interactions between Fermi quasiparticles and collective
modes of the spin liquid. This interaction may receive
added strength from nesting of the Fermi surfaces of
FIG. 2 (color). Electron (red and magenta) and hole (green and
blue) pockets. The difference in size between pockets formed
from bonding and antibonding orbitals originates from possible
difference between the corresponding tunneling amplitudes. The
dashed lines represent the Luttinger surfaces ���k� � 0. The
thick dashed red lines are loci of the gap minima, �a�k� �
	ta�k�=2.
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particles and holes. To describe the instability one needs to
move beyond RPA. We follow here Ref. [5] and write down
an effective action for quasiparticles interacting with col-
lective excitations. The interaction comes from the dia-
gram depicted on the left-hand side of Fig. 3. This four-
point function can be approximated as shown on the right-
hand side of this same figure, leading to the following
effective action �p � �!;k��:

S �
1

2

X
p;j

Aj�	p��!2 	 �vFkx�2 	 �2�Aj�p�

�
X
p;�

 ��
��	p�G

	1
RPA�p� 

�
��p�

�
X
q;k

�
�
q
�
;
k
�

�
Aj�q� ���k��C�

j��� �	�	k	 q�; (8)

where all fields are real and �� is the charge conjugate of �.
Aj is the bosonic field transforming according to the vector
representation of the SO(8) group,  �� are spinor fields of
right and left chirality, and �j are gamma matrices of the
SO(8) group. In principle, there is an interaction within
each particle multiplet, but we neglect it by accepting the
approximation of Fig. 3. Such interactions lead to the
creation of bound states with spectral gap

���
3
p

�. We, how-
ever, treat these as high energy processes. From general
considerations, supported by the calculation that follows,
we conclude that ��

������
vF
p

�.
In coupling the ladders together, the SO(8) symmetry is

reduced to SO(6) (provided jt�0j � t	0). The quasipar-
ticles that transformed in an 8 dim. representation under
SO(8) now are arranged into 4 dim. spinors. These spinors
are precisely the same that appear in the SO(5) theory of
superconductivity [12]. We thus expect the same phenome-
nology present in SO(5) models to be present here. At half
filling the coupling of the ladders will lead to a sponta-
neous breaking of the SO(6) symmetry. Possible ordered
states include superconductivity (SC), antiferromagnetism
(AFM), and a staggered flux phase (SFP). The physics of
explicit SO(6) breaking terms will be studied in later work.

Moving away from half filling introduces a nonzero
chemical potential �, and the SO(6) symmetry is reduced
down to SU�2� � U�1�. The chemical potential acts on the
vector bosons as a ‘‘magnetic field’’ moving the Cooperon
down in energy. At the same time it partially removes the
nesting such that the electron and hole pockets become
unequal in size and pockets of one type may even disap-
pear. In this case SC becomes the leading instability.
α
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γ

δ
jj

α

β

γ

δ

=

FIG. 3. Approximation of the four-quasiparticle interaction by
the emission of an intermediate vector boson.
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We are able to provide an estimate of the superconduct-
ing ordering temperature, Tc. The RPA result remains valid
at �<�=2 so that the Cooperon has not yet condensed
and the ground state of the single ladder remains un-
changed. [For � 
 2� where Cooperons do condense, a
more sophisticated approach similar to [13] is required.]
The dispersion relations are modified to

Ea�k� 

�kx 	 p0�

2

2mk
�

k2
?

2m?
	 �F 	�;

Ea�k�G=2� 
 	
�kx 	 pG=2�

2

2mk
	

k2
?

2m?
� �F 	�;

(9)

where �F � ta0=4	 �2=ta0, p�1�1�G=4 � kFa � ta0=2vF,
m? � �2

0=ta0, and mk � ta0=2v2
F. In two dimensions the

density of states on the Fermi surface is �F �
����������
mkm?
p

	 �
�0��

2
p
	vF

. The pairing susceptibility is


	1 � ��!� 2��2 	 �vFqx�
2 	 �2� � �2��!;q�: (10)

Since the interaction decays at high energies at the scale �,
we can take it as the high energy cutoff in the polarization
operator. At !; q � 0 we have 
	1�0; 0� 
 	�2 � 4�2 �

�vF�F�2=�� ln�
�����������������������
��F ����

p
=T� which determines the

mean field temperature of the transition to a superconduc-
tor with a stiffness determined by the dopant density:

Tc 

��������������������������������
��F�ta0� ����

q
exp

�
	

1	 �2�=��2

const� ��0vF=��

�
: (11)

This expression is valid only when ta0 exceeds 2�. As �
increases so does Tc. The Tc of other possible instabilities
(AFM and SFP) is found approximately (ignoring the
consequences of the destruction of a �	;	� nesting) by
setting � � 0 in Eq. (11). These instabilities are thus
exponentially disfavored.

While the expression for Tc is not valid if �> �=2, we
can still ask what happens to the Fermi surface for tem-
peratures above any putative Tc. Upon increasing �>
�=2, the single-particle gap on the ladder decreases but
never vanishes [6] and so the ladder Green’s function
retains its zeros. It is these zeros that prevent the RPA
electron pockets from merging together (see Fig. 2). We
thus do not expect, within the validity of the model, a
transition to a large Fermi surface for some �c.

To provide an estimate of � entering the expression for
Tc, we calculate the three-point correlation function in the
SO(8) Gross-Neveu model using the form factor approach.
To evaluate this correlator, we insert a resolution of the
identity between fields, reducing the correlation function to
a sum over matrix elements. Keeping only matrix elements
involving single-particle states we find upon Fourier trans-
formation,
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1

v2
F

Da
���p1;p2��

ha;	p1jAaj0i
E1�E1�!1�

�
h0j ��j ��;	p2ih ��;	p2j �	ja;	p1i

E2�!2	E2�
�
h0j �	j ��;	p1	p2ih ��;	p1	p2j ��ja;	p1i

E12�!1�!2�E12�

�

	
h0jAaja;p1i

E1�!1	E1�

�
	
ha;p1j 

�
	j ��;	p2ih ��;	p2j 

�
�j0i

E2�!2�E2�
�
ha;p1j 

�
�j�;p1�p2ih�;p1�p2j 

�
	j0i

E12��!1�!2	E12�

�

	
h0j ��j ��;p2ih ��;p2jA

aj�;p1�p2ih�;p1�p2j 
�
	j0i

E12E2�!2	E2��!1�!2	E12�

�
h0j �	j ��;	p1	p2ih ��;	p1	p2jAaj ��;	p2ih ��;	p2j ��j0i

E12E2�!2�E2��!1�!2�E12�
: (12)

Each state is labeled by its isotopic index and momentum, p. Momentum and energy are parametrized in terms of

rapidities, �i via pi � � sinh��i�=vF, Ei � � cosh��i�, and E12 �
�����������������������������������������
v2
F�p1 � p2�

2 � �2
q

. The matrix elements of the
Fermi operators are given by [6]:

h0j ��j�; �i � Ae�i	=4C��e
��=2; h�; �1j 

�
�ja; �2i � �C�

aC���e
���1��2�=4g��1 	 �2�;

g��� �
B

1=2	 cosh�
exp

�Z 1
0

dxsin2�x�=2	�
x sinhx cosh�x=2�

�2 cosh�x=6� � e	7x=6�

�
;

(13)

where C is the charge conjugation matrix. A and B are related constants on the order of�
������������
�=vF

p
. For the Bose operators

we have h0jAajb; �i � hb; �jAaj0i � AB�ab; h�jA
aj
i � 0, where AB is O�v	1=2

F �. The vertex is then given in terms of the
three-point function via �a�� � 2	G	1

a �p1�G
	1
� �p2�G

	1
� �	p1 	 p2�D

a
���p1; p2�, where

Da
���p1; p2� �

ABA�C�
a���e

	�12=4g��12�

E1E2

�
e	i	=4

�!1 	 E1��!2 � E2�
	

ei	=4

�!1 � E1��!2 	 E2�

�

	 ��p1; p2; !1; !2� ! �	p1; p1 � p2;	!1;	!1 	!2��; (14)
where p1;2 � �=vF sinh�1;2 and the G0s are the corre-
sponding noninteracting propagators. We also note that
g�x� � 	Be	jxj=4 for jxj � 1. As we see, the vertex is a
smooth function of momenta and frequencies changing
with a characteristic scale � as written in (9). This deriva-
tion justifies Eq. (11).

In conclusion, we have constructed a toy model of a
doped spin liquid. This model possesses a number of
interesting features. Vis-à-vis ARPES measurements, it
offers an alternative framework in which to understand
the observed arcs in underdoped cuprates [3,11]: such
arcs may be Fermi pockets unresolved by ARPES due to
disorder and limited experimental accuracy. It further sug-
gests using an observed line of minimal gap will lead to
overestimate of the number of electrons present in a band.
Beyond implications for ARPES, the model (at half filling)
possesses an SO(6) symmetry and so encompasses the
same phenomenology as SO(5) models of superconductiv-
ity including a 	 resonance at energy 2�. Away from half
filling superconductivity is preferred and the model is
under sufficient control to provide an estimate for the
superconducting Tc. Finally we point out above Tc the
model predicts the existence of a low lying Cooperon
excitation.
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