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Nonlinear Ripple Dynamics on Amorphous Surfaces Patterned by Ion Beam Sputtering
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Erosion by ion-beam sputtering (IBS) of amorphous targets at off-normal incidence frequently produces
a (nanometric) rippled surface pattern, strongly resembling macroscopic ripples on aeolian sand dunes. A
suitable generalization of continuum descriptions of the latter allows us to describe theoretically for the
first time the main nonlinear features of ripple dynamics by IBS, namely, wavelength coarsening and
nonuniform translation velocity, that agree with similar results in experiments and discrete models. These
properties are seen to be the anisotropic counterparts of in-plane ordering and (interrupted) pattern
coarsening in IBS experiments on rotating substrates and at normal incidence.
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Ever since their earliest observation [1], the production
of ripples on the surfaces of amorphous targets subject to
ion-beam sputtering (IBS) at intermediate energies has
been fascinating due to the similarities with macroscopic
ripples, like those produced underwater [2], or on the sur-
face of aeolian sand dunes [3]. Beyond the morphological
resemblance, IBS ripples share many other properties with,
e.g., aeolian ripples, such as wavelength coarsening and
pattern translation with time [4,5]. Remarkably, while
typical wavelengths of the latter are above 1 cm, the
periodicity of IBS ripples is in the 100 nm range [6], these
patterns having gained increased interest recently for ap-
plications in nanotechnology, ranging from optoelectronic
to catalytic [7]. IBS ripples are produced on a wide class of
substrates, from amorphous or amorphizable (silica, Si,
GaAs, InP) to metallic targets (Cu, Au, Ag) [6]. In view,
moreover, of their implied loss of in-plane symmetry, IBS
ripples provide interesting instances of systems hosting a
competition between pattern forming and disordering
mechanisms [8].

A successful description of the main features of IBS
ripples was provided by Bradley and Harper (BH) [9],
based on Sigmund’s linear cascade approximation of sput-
tering processes in amorphous or polycrystalline targets
[10]. The linear equation derived by BH describes satisfac-
torily some properties of IBS ripples, such as their align-
ment with the ion beam as a function of the incidence angle
to target normal � [wave vector parallel (perpendicular) to
the projection of the ion beam for � < �c (� > �c), for
some threshold �c]. Other features, such as ripple stabili-
zation or wavelength dependence with ion energy or flux,
required nonlinear extensions of BH’s approach [11,12],
leading to an anisotropic generalization of the well-known
Kuramoto-Sivashinsky (KS) equation [8,11]. However, a
notable limitation of the anisotropic KS (AKS) equation is
its inability to predict ripples that coarsen with time, con-
tradicting observations in many experiments and/or dis-
crete models of IBS (see [5,13] and references therein).
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In this Letter, we introduce a ‘‘hydrodynamic’’ model
[3,14,15] for IBS ripple production at off-normal inci-
dence. Time scale separation between microscopic pro-
cesses (collision cascades, surface diffusion) and pattern
evolution allows us to derive an improved equation for the
surface height. The new nonlinear terms appearing allow
for ripple coarsening and pattern translation with nonuni-
form velocity, as seen in experiments and discrete models.
Our theory has both the AKS equation [11] and the hydro-
dynamic theory [15] proposed for normal incidence con-
ditions [16] as particular limits, and enables analysis of the
important case of rotating substrates [17]. In addition, our
model may be important also to the context of ripples on
aeolian sand dunes, where the standard 1D approximation
requires validation, fully anisotropic 2D models being
scarce [3], as incidentally occurs in many other contexts
within pattern formation [18].

During IBS of amorphous or semiconductor substrates,
in which the ions amorphize the subsurface layer, incident
ions lose their energy through random collision cascades in
the bulk [10]. Near-surface atoms receiving enough energy
and momentum to break their bonds are in principle sput-
tered away, although they may join the current of surface
adatoms that are available to other relaxation mechanisms,
such as surface diffusion, before incorporating back to the
solid bulk. Within the so-called hydrodynamic approach to
aeolian sand dunes [3] and ion-sputtered surfaces [14,15],
we consider two coupled fields, namely, the thickness of
the mobile surface adatoms layer, R�x; t�, (related with the
density of mobile adatoms through the atomic volume) and
the height of the bombarded surface above a reference
plane, h�x; t�. Their time evolution is provided by

@tR � �1����ex � �ad �Dr
2R; (1)

@th � ��ex � �ad; (2)

where �ex and �ad are, respectively, rates of atom excava-
tion from and addition to the immobile bulk, �1��� � ��
measures the fraction of eroded atoms that become mobile,
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and the third term in Eq. (1) describes motion of mobile
atoms along the surface as due to isotropic thermal diffu-
sion (D being a constant for amorphous materials). Even if
all eroded atoms are sputtered away (� � 1), we assume a
nonzero average fraction of mobile atoms, Req.

Under the assumption that nucleation events are more
likely in surface protrusions, in analogy to the Gibbs-
Thompson relation we have

�ad � �0�R�1� �2x@2
xh� �2y@2

yh� � Req�; (3)

where �0 is the mean nucleation rate for a flat surface (on
the xy plane) and �2x, �2y � 0 describe variation of the
nucleation rate with surface curvatures. Note that, in (3),
the full thickness of the mobile adatoms layer is affected by
the shape of the surface.

The rate at which material is sputtered from the bulk
depends on the angle of incidence, ion and substrate spe-
cies, ion flux, energy, and many other experimental pa-
rameters. If the beam direction is in the xz plane, we have,
following [11,15]

�ex � �0�1� �1x@xh� �2x@2
xh� �2y@2

yh� �3x�@xh�2

� �3y�@yh�2 � �@xh���4x@2
xh� �4y@2

yh��; (4)

where parameters reflect the dependence of �ex on the
local shape of the surface [19], as described by more
microscopic derivations such as BH or generalizations
thereof [11,20]. Analogous, but not equal, geometrical
couplings to the driving occur in aeolian sand dunes [3],
or in growth onto amorphous substrates [21]. Note the loss
of reflection symmetry in the x direction, but not in the y
direction. For a planar surface, atoms are sputtered from
the bulk in a typical time of order ��1

0 .
The main difference between former models [9,11,12]

and our present model, Eqs. (1)–(4), is that, in the latter,
eroded material is allowed to redeposit locally, and there is
an implicit viscous flow [22] in the amorphized layer
through the evolution of R. These additional mechanisms
are seen below to induce richer pattern dynamics than in
[9,11,12].

The linearized Eqs. (1)–(4) have solutions Rl �
R̂leik	x�!kt, hl � ĥleik	x�!kt, with a dispersion relation,
!k, given in the long wavelength limit by [19]

Re�!k�����0��2xk
2
x��2yk

2
y���
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�ReqD�k
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x�k

2
y���2xk

2
x��2yk

2
y��O��k4�; (5)

Im �!k� � ����0�1xkx �O�k3�; (6)

where � 
 �0=�0 is a dimensionless parameter; the ero-
sion rate being much smaller than the nucleation rate, ��
1 for typical experiments. Equation (6) is a simple conse-
quence of the asymmetry in the x direction, induced by the
incoming flux.
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The surface morphology is dominated by the periodic
pattern with wave vector kmax making Eq. (5) a positive
maximum. It can be shown [19] that kmax is oriented along
the x̂ or ŷ directions, as observed experimentally [6]. Close
to the instability threshold, before nonlinear terms are no
longer negligible, one has kmax

x;y � �
1=2. Substituting this

into Eqs. (5) and (6) provides us with estimations of the
typical time and length scales of the pattern, that we
employ to rescale X � �1=2x, Y � �1=2y, T2 � �2t, and
T1 � �3=2t, and perform a multiple scale expansion of
Eqs. (1) and (2), in which R can be adiabatically elimi-
nated. To lowest nonlinear order, we get [19,23]
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� � ����0�1x; �x � ���0�2x � �
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2
1x;

�y � ���0�2y; ��1�i � ����0�3i;

�i � �� ��D��Req�0�2i��1x; �i � ���0�4i;

Kij � DReq�2i � ��D ����2i � �2j� ���0Req�2i�2j�;

��2�ij � �� ��D��Req�0�2i��3j: (7)

Equation (7) generalizes the AKS-type equations obtained
[9,11,12] within BH approach to IBS. While sharing the
same reflection properties in the x and y directions and
most of the terms on the rhs, both equations differ crucially
by the presence here of the ��2�ij nonlinearities. Moreover, in

the absence of redeposition (� � 1), ��1�i and ��2�ij have the
same signs, making Eq. (7) nonlinearly unstable, as in the
BH case [15,24,25]. Note, the linear dispersion relation of
(7) matches Eqs. (5) and (6) above. Under normal inci-
dence, parameters are isotropic and �1x � �4x � �4y � 0,
Eq. (7) reducing to that obtained in [15,24], and in [21]. As
a final remark, let us quote the form of Eq. (7) for sample
rotation around the z axis during bombardment (see, e.g.,
[17,26]). Dynamics of h are given by a different isotropic
limit of Eq. (7), namely,

@th � ��rr
2h�Krr

4h� ��1�r �rh�2

� ��2�r r
2�rh�2 � ��3�r r 	 ��r

2h�rh�;

�r � ��x � �y�=2; ��1�r � ��
�1�
x � �

�1�
y �=2;

��2�r �
1

4

X

i;j�x;y

��2�i;j ; ��3�r �
1

2

X

i;j�x;y

��2�i;j 	i;j � �
�2�
r ;

Kr � �3Kx;x � 3Ky;y �Kx;y �Ky;x�=8;

(8)

with parameters (subscript ‘‘r’’ denotes ‘‘rotating’’).
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To the best of our knowledge, Eq. (7) is new, and indeed
has a rich parameter space. Numerical integration (not
shown) within linear regime retrieves all features of the
ripple structure as predicted by the BH theory, i.e., depen-
dence of the ripple wavelength with linear terms, and ripple
orientation as a function of �. Entering the nonlinear
regime, and as occurs in the AKS equation and its general-
izations [11,12], nonlinearities ��1�i lead to saturation of the
pattern with constant wavelength and amplitude. In ab-
sence of these terms, the ripple wavelength grows indef-
initely as l�t� � tn with n � 1=2 [27,28] until a single
ripple remains in a finite simulation domain. As an aniso-
tropic generalization of the ordering process observed for
normal incidence [15,16], pattern coarsening requires the
presence of ��2�i;j , whose magnitude and mathematically
correct sign [25] are due to describing redeposition by
means of the additional field R. When the values of these
coefficients increase relative to ��1�i , coarsening stops later,
and the amplitude and wavelength of the pattern also
increase. The coarsening exponent n will take an effective
value that will be larger the later coarsening stops, and may
depend on simulation parameter values. For instance, we
show in Fig. 1 snapshots of a numerical integration of
Eq. (7) for relatively large ��2�i;j . The apparent coarsening
is quantified in the plot of l�t� shown in Fig. 2(a), compat-
FIG. 1. Numerical integration of Eq. (7) using �x � 1, �y �
0:1, �x � 1, �y � 0:5, �i � 0:1, ��1�x � 0:1, ��1�y � 5, ��2�i;j �
�5, Ki;j � 1. Top views for t � 10; 106; 953 (a), (b), and (c),
respectively. Insets are height autocorrelations. All units are
arbitrary. (d): Top to bottom, side cuts of (c), (b), (a), and grooves
obtained for sign changed ��1�x;y and ��2�i;j . Curves have an artificial
offset.
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ible (after transient effects analogous to those in [27]) with
n � 0:19. Note the saturation of ripple wavelength at long
times, together with saturation in amplitude, as shown in
the plot of the surface roughness (rms width) W�t� in
Fig. 2(b). These results are similar to those obtained ex-
perimentally for IBS of Si in [4]. For a different experiment
on Si, precise measurements of the coarsening exponent
[5] yield n � 0:50�4�, no saturation having been observed
in this system, as we would expect. Here, the dispersion
velocity of the pattern was also measured, finding that it
decays with ripple wavelength or, equivalently, with time.
We have also observed the same trend in the dispersion
velocity of the ripples shown in Fig. 1. Experiments also
exist, e.g., for IBS of Si, in which ripple coarsening is
absent or residual [29], that would correspond to smaller
��2�i;j values in (7), see, e.g., an example in Fig. 3, where
‘�t� � logt, approximately. Ripple coarsening has been
also observed in a Monte Carlo model of IBS [13], in
which rules implement Sigmund’s theory. To our purpose,
the main conclusion of this study is the correlation between
an increasing l�t� and nonuniform dispersion velocity, and
on the parameter-dependent values of the coarsening ex-
ponent. Let us note that, on the experimental side, values of
n show a large scatter in the literature (see references in
[6,13]). Additional nonlinear effects can be described by
Eq. (7). A first one is production of grooves (as opposed to
ripples), due to the loss of up-down symmetry induced by
quadratic nonlinearities. Indeed, by changing the sign of
��1�i , grooves replace ripples, see Fig. 1(d); this calls for
systematic experimental exploration. A second effect is
FIG. 2. Ripple wavelength l�t� and surface roughness W�t� for
parameters as in Fig. 1. The straight line represents l� t0:19. All
units are arbitrary.
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FIG. 3. Numerical integration of Eq. (7) for parameters as in
Fig. 1, except for ��1�x � 1. Top views for t � 10; 106; 953 (a),
(b), and (c), respectively. (d): Surface roughness W�t� for the
same simulation. Inset: l�t� for the same system, showing mar-
ginal coarsening. All units are arbitrary.
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related with cancellation modes (CM), known in the AKS
equation [12,30] and other models of IBS [14,15,24].
These are linearly unstable modes for which nonlinearities
cancel one another exactly. While for equations like the
one considered in [15,21] CM affects well posedness,
anisotropic systems [12,30] may remain better defined in
the presence of CM. In our case, if reflection symmetry
breaking terms are neglected in Eq. (7) and BH parameters
are used, the same CM occur as in the AKS equation.
Additional CM ensue between the ��1�i and ��2�i;j terms for
appropriate relative signs [21,25]. We have verified nu-
merically that the full Eq. (7) breaks down for the latter
CM, but can support AKS-type CM. That these solutions
are physically realizable or are artifacts of the small slope
approximation made, remains to be assessed. Useful infor-
mation on this issue might come from field experiments in
aeolian sand dunes.

In closing, we mention IBS of metals as an immediate
experimental domain to which the above results may be
relevant [6], albeit differing in the degree of universality.
There, however, the correct extension of BH theory is not
yet clear, nor is its importance relative to anisotropic
surface diffusion. We have taken preliminary steps in this
context [20], and expect to make progress in this direction
soon.
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