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Hardness of Covalent and Ionic Crystals: First-Principle Calculations
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A new concept, the strength of bond, and a new form expressing the hardness of covalent and ionic
crystals are presented. Hardness is expressed by means of quantities inherently coupled to the atomistic
structure of matter, and, therefore, hardness can be determined by first-principles calculations. Good
agreement between theory and experiment is observed in the range of 2 orders of magnitude. It is shown
that a lower coordination number of atoms results in higher hardness, contrary to common opinion
presented in general literature.
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Hardness, in general, is understood as the extent to
which a given solid resists both elastic and plastic defor-
mations. Experimentally, its value is defined by pressing an
indenter into the surface of a material and measuring the
size of the impression. The reproducible relationship of a
load to the area or depth of indentation is a measure of
hardness, such as found in Brinell, Rockwell, Vickers, or
Knoop hardness testers [1].

The hardness measured by a diamond indenter that is
shaped as an inverted pyramid is known as Vicker’s or
Knoop’s microhardness. Because Knoop’s scale uses a
sharper diamond wedge, its values may be lower than
Vicker’s scale values for the same load.

In principle, hardness should be related to crystal ori-
entation. However, during the indentation, the force of the
diamond wedge is diverted sideways, so the sample is
subjected to a combination of stresses—compression,
shear, and tension in various directions. Consequently,
the anisotropic effects are reduced. Additionally, the
strength of shear or tension of a sample is highly dependent
on the presence of defects in the sample. As a result,
experimental values of hardness can vary by more than
10% for the same sample [2].

It is obvious that the hardness characterized above is a
complex quantity and, therefore, for theoretical study, we
need another appropriate definition. Recently, Gao et al.
[3] calculated the hardness of an overly covalent crystal
using the expression

H�GPa� � 350��Ne�
2=3e�1:191fi�=d2:5; (1)

whereNe is the electron density expressed in the number of
valence electrons per cubic angstrom, d is the bond length
in angstroms, and fi is the ionicity of the chemical bond in
a crystal scaled by Phillips [4]. First, this method was
employed for calculating the hardness of typical covalent
and polar covalent crystals [3] and, later, complex oxide
materials [5] and nitride spinels [6].

In this work, for the first time to our knowledge, the
ab initio method for the calculation of the hardness of
single crystals is presented. The new concepts introduced
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here, the strength of a bond Sij and the reference energy ei,
independent of particular bond type, are inherently coupled
to the atomistic structure of matter and to quantities acces-
sible by first-principles techniques, which forms the major
advance over the previous methods.

The ei quantities that will be essential for further con-
siderations play a key role in the correlations between bulk
moduli and core-level shifts in transition-metal carbides
and nitrides [7]. Even though hardness is different from
bulk or shear moduli, the bulk modulus is the best indicator
of the hardness for materials with diamondlike structure
[2]. Bulk properties are expected to be related with hard-
ness because, from the microscopic point of view, not only
the surface but the finite volume of the sample interacts
with the indenter. Accordingly, atomic bonds in volume
have to be taken into account.

We introduce bond strength Sij between atoms i; j

Sij �
���������
eiej
p

=�dijnij�; (2)

where the reference energy ei � Zi=Ri, Zi is the valence
electron number of the atom i, and nij is the number of
bonds between atom i and its neighboring atoms j at the
nearest neighbor distance dij.

The radius Ri is determined for each atom in a crystal in
the following way: For a given atom i within a solid, we
choose a sphere centered at the atom i, the radius Ri of
which is found out so that the sphere contains exactly the
electronic valence charge Zi. In other words, the radius is
chosen so that the sphere is electrically neutral as a whole.

In brief, the bond strength Sij is determined by the
valence electron numbers Zi, Zj of the atoms i; j in the
bond, the crystal valence electron density, the number of
bonds nij, and the bond length dij between atoms i; j. The
reference energy ei of the atom i is the potential of the
individual atom i to attract the crystal valence charge.

Using this concept of bond strength, we set up our theory
on the following statement: The hardness of the ideal
single crystal is proportional to the bond strengths Sij
and to their number in the unit cell of the crystal.
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In the simplest case of the crystal of an element (e.g.,
silicon, two Si atoms in the unit cell), the hardness equals

H�strength=volume� � �C=��
��������
eiei
p

=�diinii�: (3)

For two atoms in the volume �, one bond strength Sii
counts interatomic Si-Si bonds only once. The proportion-
ality constant C is chosen so that it couples calculated
values with experimental values if all distances (i.e., Ri,
di, and for �) are measured in angstroms. Since the
experimental value of hardness of any chosen element
determines the value of C, the hardness of other crystal
elements can test the validity of Eq. (3). For typical co-
valent diamond and silicon crystals nii � 4, and for a good
agreement with experimental values, the constant C should
be at about C � 1550.

The definition of hardness based on the bond strengths
implies that the crystal lattice is supported by bonds in all
directions, and, consequently, nij � 4 for all atoms in the
crystal. If the coordination number of the atom in a crystal
is lower than fourfold, then the mechanism for plastic
deformation or the volume change under pressure of the
indenter prefers bending or rotation rather than breaking
the bonds of the crystal framework. The concept of break-
ing bonds loses its meaning also in metals where the
electron gas is just a sort of negatively charged glue for
the packing of the positive ions. In such cases, the hardness
of material is obviously lower than the value predicted by
Eq. (3).

When there are differences in the ei, ej potentials of the
atoms in the bond, it is evident that the trend of breaking
the bonds increases by the presence of the ‘‘weaker part-
ner’’ in the bond. The effect of the difference between ei
and ej is phenomenologically described by the exponential
factor exp���fe�, where

fe �
�ei � ej
ei � ej

�
2
� 1� �2

������������
�eiej�

q
=�ei � ej��

2: (4)

The far right side has been rearranged to see that fe �
1� ��geometrical average�=�arithmetic average��2, which
is a suitable form with respect to generalization for more ex
components.

Then the expression for hardness of the binary com-
pound with two different atoms (atom a and b in the
volume �) has the form

H�strength=volume� � �C=��
�������������
�eaeb�

q
=�dabnab�e��fe :

(5)

The constant � should approach 4, supposing that it is
chosen so that the calculated hardness fits experimental
values for NaCl and KCl crystals having the highest fe
values of all the compounds studied in this work.

We do not optimize the fit of C and � to experimental
data taking into account their variations [2]. We use the
values C � 1550 and � � 4 throughout this work. All
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other quantities in Eqs. (4) and (5) are material dependent
and determined from standard ab initio calculations.

To test our theory, at first we calculated the hardness of
several binary compounds using Eq. (5). Performing a
standard total energy calculation within density functional
theory (DFT) in the local density approximation (LDA),
we obtained equilibrium lattice constants, crystal charge
density, and corresponding radii Ri, Rj that determine the
ei and ej. The LDA plane-wave all-electron pseudo-
potential method [8] was used; however, any other compu-
tational technique producing reliable crystal charge density
can be applied. In Table I, the results of our LDA calcu-
lations, and, on the right side, the experimental data of
hardness and results of Gao’s equation [3] based on ex-
perimental bond length dexpt and ionicities fi [4] are given.

The ab initio results on the left side of Table I are in good
accordance with Gao’s results [3] and experimental data
for all AIII-BV compounds. For AII-BVI ZnS, ZnSe, and
ZnTe, our results are closer to experiment than the results
of Gao’s theory. Compared to experimental data, hardness
of the transition-metal carbides and nitrides and ionic NaCl
and KCl are also in reasonable agreement with experiment.
It is interesting to note that the ei quantities for the same
atom in different bonds (e.g., carbon in tetrahedral dia-
mond or in SiC and in octahedral WC, TiC, or VC) differ
by no more than 10%. These similarities can be observed in
Table I also for N, Cl, or ‘‘cations’’ Ga, Al, or Zn. It seems
plausible to transfer these values to other compounds with
a similar bonding to get a qualitative prediction of the
hardness of more complex materials.

For more complex crystals than binary compounds, we
at first generalize Eq. (5). Following Refs. [3,5,6,10], the
hardness of multicomponent compound systems is ex-
pected as a geometrical sum of the values of hardness of
all binary systems in the solid. For a system with n differ-
ent binary systems described by bond strengths Sij derived
from the energies ei, ej, the generalized form of Eq. (5) is

H �
C
�
n
�Yn
i;j�1

NijSij

�
1=n
e��fe ;

fe � 1�
�
k
�Yk
i�1

ei

�
1=k
�Xk
i�1

ei

�
2
;

(6)

where Nij is the number—or multiplicity—of the binary
system ij, and k corresponds to the number of different
atoms in the system.

For illustration, we apply Eq. (6) to nitride spinel mate-
rials C3N4, Si3N4 studied in Refs. [6,11] and to cubic
BC2N studied in Ref. [3].

In nitride spinel materials, there are 8 structural units
A3N4 (A � C;Si;Ge) in the unit cell: 8 A� atoms have
tetrahedral bonds with N atoms at the distance dtet, and
16 A� atoms have octahedral bonds with N atoms at the
distance doct. 32 N atoms are bonded by A� or A� atoms in
1-2



TABLE I. Our ab initio results (first five columns) compared with experimental data and the
results of Gao’s [3] formula, Eq. (1).

dtheor e1 e2 fe Htheor dexpt fi HGao Hexpt

dia 1.527 4.121 4.121 0.000 95.4 1.554 0.000 93.6 96.0
Si 2.343 2.712 2.712 0.000 11.3 2.351 0.000 13.6 11.3a

Ge 2.418 2.631 2.631 0.000 9.7 2.449 0.000 11.7 8.8
SiC 1.887 2.941 3.910 0.020 31.1 1.887 0.177 30.3 31.0
BN 1.542 2.937 5.290 0.082 63.2 1.568 0.256 64.5 63.1
BP 1.938 2.737 3.663 0.021 26.0 1.966 0.006 31.2 33.0
BAs 2.052 2.632 3.433 0.017 19.9 2.052 0.002 26.0 19.0a

AlN 1.884 2.175 5.034 0.157 17.6 1.901 0.449 21.7 18.0
GaN 1.950 2.394 4.922 0.119 18.5 1.946 0.500 18.1 15.1
GaP 2.327 2.032 3.434 0.066 8.7 2.359 0.374 8.9 9.5a

AlP 2.353 1.967 3.476 0.077 7.9 2.365 0.307 9.6 9.4
InN 2.151 1.853 4.700 0.189 8.2 2.160 0.578 10.4 9.0
GaAs 2.422 1.987 3.251 0.058 7.4 2.456 0.310 8.0 7.5a

InP 2.534 1.778 3.350 0.094 5.1 2.542 0.421 6.0 5.4
AlAs 2.438 1.930 3.299 0.069 6.8 2.442 0.274 8.5 5.0a

GaSb 2.610 1.953 2.871 0.036 5.6 2.650 0.261 6.0 4.5a

AlSb 2.651 1.874 2.891 0.046 4.9 2.646 0.426 4.9 4.0a

InAs 2.615 1.749 3.193 0.085 4.5 2.619 0.357 5.7 3.8
InSb 2.790 1.720 2.825 0.059 3.6 2.806 0.321 4.3 2.2a

ZnS 2.334 1.192 4.189 0.310 2.7 2.347 0.623 6.8 1.8a

ZnSe 2.436 1.221 3.890 0.273 2.6 2.454 0.630 5.5 1.4a

ZnTe 2.620 1.253 3.440 0.217 2.3 2.637 0.609 4.1 1.0a

VC 2.049 3.659 3.774 0.000 27.2 29.0
TiC 2.130 2.815 3.725 0.019 18.8 24.7a

TiN 2.097 2.828 4.904 0.072 18.7 17.7a

WC 2.194 3.971 3.764 0.001 21.5 2.197 0.140 26.4 18.8a

NbC 2.219 3.272 3.723 0.004 18.3 18.0
NbN 2.187 3.296 4.906 0.039 19.5 17.0
NaCl 2.740 0.604 4.598 0.589 0.4 2.820 0.936 2.7 0.3
KCl 3.080 0.546 4.135 0.588 0.2 3.147 0.951 1.6 0.2

aKnoop hardness by Lide [9]; unless noted, all experimental data are taken from Ref. [3] and the
references therein.
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distorted tetrahedrons. Since there are no N-N bonds (only
8 tetrahedral A�-N and 16 octahedral A�-N bonds), all
bonds of 56 atoms in the unit cube can be described by
A-N bonds. Therefore, the two binary systems (n � 2) in
the unit cell, i.e., 8	 (A�-N) and 16	 (A�-N), can be
characterized as �dA��N � dtet; eA�eN�; �dA��N �

doct; eA�eN� for systems of atoms A� and A�, respectively.
Equation (6) for the hardness then reads

H �
C
�

2
�

8

�������������eA�eN
p

4dtet
	 16

�������������eA�eN
p

6doct

�
1=2
e��fe ;

fe � 1� �3�eA�eA�eN�
1=3=�eA� � eA� � eN��

2:

Because this example serves as an illustration for using
Eq. (6), instead of performing total energy calculations, we
use distances dtet and doct determined by DFT in LDA by
Gao [6] or Mo [12], and we approximate the bond strengths
with the ‘‘corresponding values’’ of eA� , eA� , and eN from
Table I. We obtain:
08550
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Data
 dtet
 doct
 �
 ) H
C3N4:
 eC�
� 4:121
 [6]
 1.51
 1.63
 296.7
 70.1
eC�
� eC�
 [12]
 1.585
 1.676
 324.3
 61.7
eN � 5:29

Si3N4
 eSi� � 2:94
 [6]
 1.75
 1.86
 445.9
 27.4
eSi� � eSi�
 [12]
 1.830
 1.885
 481.3
 24.6

eN � 5:03
Ge3N4:
 eGe� � 2:63
 [6]
 1.85
 1.95
 519.7
 19.1

eGe� � eGe�

eN � 4:92
The ei values are taken from diamond and BN (for
C3N4), from SiC and AlN (for Si3N4) and from Ge and
GaN (for Ge3N4).

The values of hardness calculated by Gao [6] for C3N4,
Si3N4, and Ge3N4 are 56.7, 30.9, and 24.3, respectively,
with a reasonable agreement with our approximations.

In the ternary BC2N compound, all atoms are tetrahe-
drally bonded. With respect to the nearest neighbors, two
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different carbon atoms C� and C� have to be made dis-
tinctive. In the tetragonal unit cell, there are eight atoms,
each of the atoms B, C�, C�, and N 2 times. The nearest
neighbors, the distances, and the corresponding products ei
of the bond strengths of four binary systems BN, BC�,
C�C�, and C�N can be written in the following way:

B: �dB-N � 1:562; eBeN� �dB-C�
� 1:573; eBeC�

�

C�: �dC�-C�
� 1:515; eC�

eC�
� �dC�-N � 1:564; eC�

eN�

C�: �dC�-C�
� 1:515; eC�

eC�
� �dC�-B � 1:573; eC�

eB�

N: �dN-B � 1:562; eNeB� �dN-C�
� 1:564; eNeC�

�:

For direct comparison with Gao’s calculations, we use
the lattice parameters a � 3:576, b � 3:576, c �
3:608 � �A� and the interatomic distances of Gao in Ref. [3].

If we denote � � 46:138, and take into account n � 4
and all Nn � 1, then Eq. (6) is

H �
C
�

4
� ���������������eC�

eC�

p

4dC�C�

�������������eC�
eB

p

4dC�B

�������������eC�
eN

p

4dC�N

�����������
eBeN
p

4dBN

�
1=4
e��fe ;

fe � 1� �4�eC�
eC�

eBeN�
1=4=�eC�

� eC�
� eB � eN��

2:

The bond strengths ei should be determined via Ri by
total energy calculations. However, if we consider the
structural similarity between BC2N, and diamond and
BN (tetrahedral bonding and interatomic distances), simi-
larly as in the former case of nitride spinels, we can transfer
the ei values from diamond and BN from Table I to BC2N.
Approximating eC�

� eC�
� 4:121, eB � 2:937, and

eN � 5:290, we obtain a quantitative estimation of the
hardness H�BC2N� � 76:5, in excellent agreement with
Gao’s [3] value 78 and experimental 76
 4 values.

The experimental value a � 3:642 �A [11] of the synthe-
sized cubic phase BC2N at ambient conditions gives, for all
interatomic distances, the value 1.577 Å. With parameters,
ei above yields the value of hardness H � 71:9.

Finally, we note several general factors that can cause
higher hardness of the crystal according to Eq. (5):
(i) higher bond strengths Sij and their density, i.e., a higher
number of atoms in volume � (the case of small atoms)
and, consequently, short interatomic distances. Notice that
dij is in the denominator of Sij; (ii) not too different ei, ej
potentials of the atoms in the bond resulting in small factor
fe; (iii) a small number of nearest neighbors (coordination
number CN) because of nij in the denominator of Sij.

The conditions in point (i) are generally accepted as
conditions for high hardness [2]. Point (ii) is analogous
to a small ionicity of the bond—see fe and fi in Table I.
The small ionicity of the bond is again a well known factor
increasing the hardness of covalent materials. On the other
hand, it is traditionally accepted that the higher CN of
atoms results in the higher hardness of material [2]. The
argument is that the high CN , i.e., the large number of
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neighbors, supports each atom by more bonds. This ‘‘com-
mon sense’’ argument is in contradiction with point (iii)
above: smaller CN increases the bond strength ergo hard-
ness. The physical reason in favor of smaller CN follows
from the meaning of the ei, ej quantities. Since ei is the
potential of an atom i to attract valence charge in the
crystal, the division of eiej to more bonds creates weaker
bonds and vice versa.

In summary, we present the first (to our knowledge)
ab initio method for calculating the hardness of covalent
and ionic crystals. We have shown that, even in the cases
where Gao’s [3] semiempirical method is applicable, the
agreement with experiment is better for our ab initio
method. By introducing new concepts, bond strengths,
and their density, the present approach extends understand-
ing the hardness on the structural and atomistic levels and
explains why the lower coordination number of atoms
results in higher hardness, contrary to the common sense
opinion presented in general literature. Additionally, it was
demonstrated that, by using the calculated ei potentials in
Table I as an approximation, a qualitative prediction of the
hardness of complex materials can be obtained by means of
the general expression of Eq. (6).
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