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Impurity Pinch from a Ratchet Process
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A ratchet-type average velocity is shown to appear for test particles moving in a stochastic potential and
a magnetic field that is space dependent. This is a possible explanation for impurity behavior in tokamak

plasmas.
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Impurity control in magnetically confined plasmas is a
very important issue for the development of fusion reac-
tors. A considerable experimental effort (see, e.g., [1-3])
has led to the conclusion that this process is far from being
understood on the basis of the existing theoretical models.
In particular, the experimental results show the accumula-
tion of the impurities in the central region of the plasma,
which appears to be a directed transport (a pinch) rather
than a diffusive one [4]. Several models have been pro-
posed [5—8], which explain some aspects of this behavior.
We present here an alternative mechanism, which shows
that an average velocity is produced in turbulent plasmas
through a ratchet-type process due to the space variation of
the confining magnetic field.

The so-called ratchet process [9] is a generic name for a
large class of average stochastic velocities that are gener-
ated by unbiased noise. This name suggests the motion of a
circular saw with asymmetric saw teeth. The ingredients of
a minimal model that produces such directed transport
consists of a periodic potential (or velocity) with broken
reflection symmetry, and a noise (usually a Gaussian white
noise). It was shown that, in spite of the asymmetry, the
stochastic motion has no systematic preferential direction
such that the average velocity is transitory and becomes
zero at large times. But, if this kind of equilibrium is
broken, a ratchet process appears. Thus, a third element
has to be included in the minimal model, which can be for
instance a driving force, a periodic or stochastic time
variation of the amplitude of the periodic potential or of
the noise, or another noise with different temperature.

We consider in slab geometry an electrostatic turbulence
represented by an electrostatic potential ¢¢(x, r), where
X = (x}, x,) are the Cartesian coordinates in the plane
perpendicular to the confining magnetic field. The latter
is directed along z axis, B = Be_ with B = ByR/(R + x,),
where B is the value of the magnetic field in the origin of
the coordinates that is at the distance R from the symmetry
axis. There is a gradient of the magnetic field VB along x,
axis. The test particle motion in the guiding center approxi-
mation is determined by

dx(1)

=v(x, 1) = —Vo(x,1) X ez<1 + %) (1)
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where x(f) represent the trajectory of the particle guiding
center, V is the gradient in the (x;, x,) plane and ¢(x, 1) =
d°(x, 1)/ By. The electrostatic potential ¢(x, ) is consid-
ered to be a stationary and homogeneous Gaussian sto-
chastic field, with zero average. It is completely
determined by the two-point Eulerian correlation function
(EC), E(x, 1), defined by

Ex, 1) ={(p(x, p(x' + x, ¢ + 1)). 2)

The average (...) is the statistical average over the realiza-
tions of ¢(x, t), or the space and time average over x’ and
#'. This function evidences three parameters that character-
ize the (isotropic) stochastic field: the amplitude, the cor-
relation time 7., which is the decay time of the Eulerian
correlation and the correlation length A., which is the
characteristic decay distance. These three parameters com-
bine in a dimensionless Kubo number K = 7./754 where
Tq = A./V is the time of flight of the particles over A, and
V is the amplitude of the stochastic velocity.

Particle motion in a stochastic potential was extensively
studied [10,11] for constant magnetic fields [R — o0 in
Eq. (1)]. It is well known since many years [12] that, for
slowly varying or large amplitude turbulence correspond-
ing to K > 1, the electric drift determines a process of
dynamical trapping of the trajectories. It consists of trajec-
tory winding on the contour lines of the potential.
Important progress in the study of this nonlinear process
was recently obtained. New statistical methods were de-
veloped [13,14] that permitted to determine the time de-
pendent (running) diffusion coefficient and even the
probability of displacements. It was shown that the trap-
ping process completely changes the statistical properties
of the trajectories determining memory effects, quasico-
herent behavior and non-Gaussian distribution [14]. The
diffusion coefficients decrease due to trapping and their
scaling in the parameters of the stochastic field is modified
[15,16].

We show here that the inhomogeneity of the confining
magnetic field determines a directed transport (an average
velocity), although the average of the right-hand side of
Eq. (1) is zero. We note that trajectory trapping is related to
the invariance of the potential along trajectories that ap-
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pears in the static case (7, — 00). This property still ap-
pears in Eq. (1), which can be reduced to a Hamiltonian
system.

Equation (1) is not similar to a typical model for a
ratchet process. However it contains the three specific
elements mentioned above and discussed in detail in [9].
They are all included in the stochastic drift velocity v(x, )
defined in Eq. (1). The periodic velocity does not appear
explicitly but the solutions of Eq. (1) for a static potential
are periodic functions of time that lie on the contour lines
of ¢(x). Thus, the Lagrangian velocity v[x(¢)] is periodic
for any solution of Eq. (1). The space dependence of the
magnetic field produces the symmetry braking of the
Lagrangian velocity. The random dynamics is determined
by the stochastic potential itself, which plays the role of the
Gaussian noise found in the standard model for ratchets.
The third element, which drives the system out of equilib-
rium, is the time variation of the potential. We show below
that for static potentials the asymptotic average velocity is
zero and that a ratchet velocity appears when the stochastic
potential is time dependent. We also show that the ratchet
process modeled by Eq. (1) has the property of current
inversion: the sign of the average velocity depends on the
parameters of the stochastic potential.

The average displacement generated by the stochastic
Eq. (1) is determined using the decorrelation trajectory
method, a semianalytical approach developed in [13,14].
The main idea in our method is to study the stochastic
Eq. (1) in subensembles (S) of realizations of the stochastic
field, which are determined by given values of the potential
and of the velocity in the starting point of the trajectories:

$(0,0) = ¢°,

The stochastic potential and velocity, reduced in the sub-
ensemble (S) defined by condition (3) are Gaussian fields
but nonstationary and nonhomogeneous, and they have
space and time dependent averages. The average velocity
determines an average trajectory in (S5), X(z; S) = (x(?))s,
where (...)s is the average over the realizations of the
potential that belong to the subensemble (3). The average
displacement for the whole set of realizations is obtained
by summing up the contributions of each subensemble as

v(0,0) = v°. 3)

x(1) = ff dBOdVOP, (60, V00, 0X(1:S), (4

where P(¢° v;0,0) is the probability density for the
values of the potential and velocity in the point (0, 0). A
similar equation can be written for the correlation of the
Lagrangian drift velocity. The trajectories contained in a
subensemble (S) have supplementary initial conditions be-
sides the necessary and sufficient condition x(0) = 0. They
evolve on contour lines of the potential with the same value
¢° which means that the corresponding paths are similar in
the sense that they are curves with comparable sizes. The
source of trajectory fluctuations, the fluctuation of the

velocity field, is zero in x = 0, r = 0. These aspects reduce
the fluctuations of the trajectories in (S) and justify the
approximation introduced in this method that consists in
neglecting the fluctuations of the trajectories around the
average trajectory in (S). The fluctuations were considered
in [14] where it is shown that they have a very weak
influence on the diffusion coefficient. Following the steps
presented in detail in [15], one obtains a closed system of
equations for the time dependent diffusion coefficient and
the average displacement in the presence of a space-
dependent magnetic field. The time is normalized with
7 and the distances with A, in the following equations
and R = R/A,.

D o0 o0 u*(1 + p?)
D“(t)—ﬁﬁ d(l)oj; duu3exp(—f>

21T
X jo dPB cos(BXYub(0), p. B). 5)
2 (e e _ w1+ p?)
<Xi(t)>_W_/; d(i)oﬁ) dl/tlxtz exp( f)
2
x ]0 dBXO(ub 1), p, B). ©6)

where X{ is the component along x; of the average trajec-
tory in (S) for a static potential that has the same space
correlation as ¢ (x, t). This average trajectory is obtained as
the solution of the equation

0 aPS(XO° XY
dt aX j R
where

PS(x) = u(p + cos(B)Bi)62 — sin(B) %>€(x). )]

is the average Eulerian potential in the subensemble (S) for
the static case. It is determined by the parameters that
define the subensemble (3) (represented by u = |v°|, p =
¢°/u, and B, the angle of v¥ with the x, axis) and by the
EC of the stochastic potential (2). The latter is an input
function that can be obtained from experiments or numeri-
cal simulations. We have considered here an analytical
expression for the EC of the type E(x, 1) = ®2E(x)A(¢).
The space factor £(x), which reflects the nonlinearity of the
stochastic Eq. (1), is modeled by

1
a(l + [x[?/2)*

where isotropic potentials were chosen for simplicity. The
parameter « determines the long distance decay of the EC
and thus, when « decreases the spectrum of the potential is
richer in long wavelength components. The normalization
£(0) = a~! was introduced in order to have the amplitude
of the velocity independent on «. The time factor A(r)
describes the time variation of the stochastic potential. It

E(x) = 9)

085001-2



PRL 96, 085001 (2006)

PHYSICAL REVIEW

week ending

LETTERS 3 MARCH 2006

appears in Egs. (5) and (6) in the function 6(¢) defined by
6(1) = [{ h(r)dr. This function is linear at small time
0(r) = ¢ and saturates at the correlation time of the sto-
chastic potential, which in these units is K, 6(f)—,_. K,
for any integrable function A. The shape of this function
has a weak influence on the average displacement and on
the diffusion coefficient and we have chosen h(r) =
exp(—t/K) in the calculations.

The average asymptotic velocity (the ratchet effect) is
obtained as

L (x(@)  AxU(K))
V# = lim o) | K

10

where (x% (7)) is the average displacement (6) for a static
potential [i.e., with 6(z) = ¢ in Eq. (6)].

The average velocity (10) can be obtained analytically
for potentials with fast time variation corresponding to
K < 1. Since the potential changes before the trajectories
travel over a correlation length, only the small time solu-
tion of Eq. (7) has to be determined. Integrating the small
time approximation of Eq. (7), which is dX?/dt = (1 +
XY/R)v? and using Eq. (6) one obtains an average dis-
placement along VB

(x,(1)) = R|:exp<92£?> - 1}. (11)

2R

The average asymptotic velocity for K < 1 is

VR=V§ ex LS -1 (12)
= Viloolr) 1

Thus, a ratchet effect appears in stochastic fields with small
Kubo numbers provided that the magnetic field has a space
variation (finite R). The average velocity is always positive
(directed to the region with smaller magnetic field). For
large R, VR = VK/2R.

When the Kubo number is not small the solution of
Eq. (7) and the integrals in Eq. (6) have to be calculated
numerically. The results obtained for the average velocity
as a function of time are presented in Fig. 1. For a static
potential (dashed line) the average velocity is transitory. It
is positive at small time, then it becomes negative and
decays to zero showing that the ratchet process does not
appear in this case. The time variation of the stochastic
potential determines a finite asymptotic value of the aver-
age velocity (solid line).

This ratchet velocity depends linearly on R™! for large
values of R = 10 (small values of VB) and a tendency of
saturation appears at smaller R. For large R, which corre-
sponds to tokamak plasma configuration, it can be written
as

1
Vit =V f(K), (13)

where f(K) is a dimensionless function, which is repre-
sented in Fig. 2 for the Eulerian correlation (9). This
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FIG. 1 (color online). The time dependent average velocity
normalized with V/R for a static potential (dashed line) and
for a time dependent one with K = 20 (solid line). R = 100, and
the EC is (9) with a = 1.

function is positive for small Kubo numbers and reprodu-
ces the analytical solution (12) at K << 1. For K larger than
a value Kj;,, that is of the order 1, the ratchet velocity
becomes negative (directed to the large magnetic field
region). The asymptotic K dependence is a power law
f(K) ~ —1/K". The ratchet velocity has the same general
behavior on K for any stochastic field, i.e., for any EC and,
in particular, for different values of « in Eq. (9). It does not
depend on the shape of the EC in the quasilinear regime
(K < 1). In the nonlinear regime (K > 1) when trajectory
trapping is effective, VX depends on the shape of the EC
and not only on K. As seen in Fig. 2, the ratchet velocity
increases and Kj,, decreases when « decreases. Also, the
scaling parameter v slightly depends on the shape of the
EC: v grows from 0.85 to 0.95 when « increases from 0.5
to 3. The dependence on the shape of the EC is a nonlinear
effect that was found in the diffusion coefficients as well
[15].

10°

FIG. 2 (color online). The absolute value of the function f(K)
appearing in the ratchet velocity (13) for the EC (9) with two
values of . The negative values of f are represented by dashed
lines.
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The physical explanation for this behavior of the average
velocity is the following. For fast variation of the stochastic
field (K < 1), the displacements during the correlation
time are much smaller than A, and they are along veloc-
ities. The latter decrease in the direction of VB producing
displacements that are smaller than in the opposite direc-
tion. An average displacement appears in the direction
—VB (positive x;). At large K a part of particles are
trapped and perform during 7, almost periodic motion on
contour lines of the potential. The probability of finding the
particle somewhere on the contour line is proportional with
the inverse of the velocity. Thus, it is larger in the high field
side of each contour line and leads to an average displace-
ment in the direction of VB (negative x,). The average
displacement on a potential contour line is proportional
with VB and with the size of the contour. The probability
of finding large size contour lines increases when the
potentials have EC’s with slower space decay (smaller
«). Consequently, the ratchet velocity is larger for such
potentials, in agreement with the results presented in Fig. 2.

The effect of the magnetic field inhomogeneity on the
diffusion coefficients is found from Eq. (5) to be negligible
at large R. When R < 10, the diffusion process becomes
nonisotropic for K > 1: the component D;; (in the direc-
tion of VB) decreases, D,, increases and a nondiagonal
diffusion coefficient appears. The scalings in K are differ-
ent for different components of the diffusion tensor and
continuously depend on R.

The ratchet velocity obtained for typical tokamak
plasma conditions is of the order of 1 m/s, which shows
that it can have an important effect on the evolution of
impurity density. This velocity is in the horizontal plane,
along the gradient of the confining magnetic field. A
similar (negative) average velocity is found in the numeri-
cal simulation of the impurity evolution in drift-Alfven
turbulence [17]. Since the amplitude of the turbulence is
usually larger in the small field size of the torus, the
positive and the negative ratchet velocities have different
effects on impurities. The positive velocity directs the
impurities from the high field boundary inside the plasma
but as it combines with the rotation velocity determined by
the magnetic configuration, the impurities reach the exte-
rior of the torus and they are expected to be eliminated due
to the increased ratchet velocity. On the contrary, the
negative ratchet velocity determines impurity penetration
from the weak field side boundary and their accumulation
inside plasma. Since the values of the Kubo number for
tokamak turbulence are in the interval [0.1, 10] both effects
can appear depending on the characteristics of the turbu-
lence. This provides in principle the possibility of control-
ling the impurity behavior. The ratchet velocity combines

with the other sources of direct transport (curvature drift or
thermodiffusion [5—8]). However, due to its specific direc-
tion (along VB) that determines a strong dependence of the
effects on the poloidal position of the impurity source, V¥
could be experimentally identified in the total average
velocity.

In conclusion we have shown that the £ X B stochastic
drift determines a directed transport in space-dependent
magnetic fields. An average velocity appears even if the
turbulence is homogeneous. It is parallel or antiparallel to
the gradient of the magnetic field, depending on the char-
acteristics of the turbulence. This statistical process is not
related to the curvature drift but it is a ratchet-type effect.
The ratchet velocity is shown here to influence the behav-
ior of impurities in tokamak plasmas, but, since the £ X B
drift is a basic nonlinearity in plasma turbulence, we expect
important effects on instabilities and turbulence evolution.
We have developed a nonstandard model for a ratchet
process based on Eq. (1), which can have applications in
other fields too. According to the classification presented in
[9], it is a two-dimensional Hamiltonian stochastic ratchet.
The velocity and the diffusion coefficient were obtained
using a semianalytical approach, the decorrelation trajec-
tory method.
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