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Harmonic Lasing in a Free-Electron-Laser Amplifier
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A method is demonstrated that allows a planar wiggler high-gain Free-Electron-Laser (FEL) amplifier
to lase so that the interaction with an odd harmonic of the radiation field dominates that of the
fundamental. This harmonic lasing of the FEL is achieved by disrupting the electron interaction with
the usually dominant fundamental while allowing that of a harmonic interaction to evolve unhindered. The
disruption is achieved by a series of relative phase changes between the electrons and the ponderomotive
potentials of both the fundamental and harmonic fields. Such phase changes are relatively easy to
implement and some current FEL designs would require little or no structural modification to test the
scheme.
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The Free-Electron Laser (FEL) is a source of high
power, coherent electromagnetic radiation that currently
successfully covers electromagnetic wavelengths from mm
waves to �30 nm. High-gain FEL amplifiers offer the
prospect of extending this range to shorter wavelengths
in the x-ray regions of the spectrum. Many proposals and
several funded projects exist to build such shorter wave-
length sources worldwide [1]. Realization of such sources
will provide great opportunities by opening up more de-
tailed investigations of many new areas of science.

Planar wiggler FELs allow resonant interactions with
radiation fields of wavelength �h � �w�1� a2

w�=2h�2,
where h � 1 is the fundamental with odd harmonics h �
3; 5; 7; . . . , the wiggler period is �w, the mean electron
beam energy in units of mec2 is �, and the rms wiggler
parameter is aw. The main limiting factor in directly ac-
cessing an harmonic interaction in a high-gain FEL is the
dominance of the interaction at the fundamental radiation
wavelength, �1. In this Letter a method is proposed that
will suppress the interaction at the fundamental while
allowing the harmonic interaction to evolve unhindered
to saturation. This offers the prospect of yet shorter wave-
length FEL operation.

The method, tentatively suggested in [2], uses a series of
relative phase changes between the electrons and pondero-
motive potentials of the resonant fields that describe the
FEL interaction. The phase of the electrons with respect to
the ponderomotive potential of the fundamental resonant
wavelength is defined as �j where j � 1; . . . ; N and N is
the number of electrons. The phase of the electrons with
respect to the ponderomotive potential of the nth harmonic
field is then �nj � n�j ��n, where �n is the relative
phase between the ponderomotive potential of the funda-
mental and nth harmonic. If the phase of the electrons with
respect to the fundamental ponderomotive potential is
changed at a pointlike region of the interaction by a relative
phase ��j � 2�=k then the corresponding phase change
for the harmonics will be ��nj � 2�n=k. Hence, if k � n
06=96(8)=084801(4)$23.00 08480
the electrons will be rephased within the ponderomotive
potential of the nth harmonic by 2� whereas that for the
fundamental will be 2�=n. While the 2� electron rephas-
ing of the nth harmonic should not adversely effect its
subsequent FEL interaction, the 2�=n electron rephasing
of the fundamental can be expected to disrupt its exponen-
tial growth.

The bunching of electrons at harmonics of the funda-
mental in a high-gain FEL was investigated in the 1D limit
in [3]. A similar notation for the FEL equations is used
here:

d�j
d�z
� pj (1)

dpj
d �z
� �

X
h;odd

Fh��w��Ahe
ih�j � c:c:� (2)

dAh
d�z
� Fh��w�he�ih�i; (3)

where j � 1; . . . ; N are the total number of electrons, h �
1; 3; 5; . . . are the odd harmonic components of the field,
�w � a2

w=2�1� a2
w� and Fh��w� are the usual difference of

Bessel function factors associated with planar wiggler
FELs. Other symbols have their usual meaning [3].

In the 1D scaling and analysis that follow, both the
wiggler period, �w, and the initial electron average beam
energy, �, are assumed constant. Tuning of the fundamen-
tal resonant radiation wavelength is therefore achieved by
variation in the wiggler magnetic field alone.

The FEL interaction is investigated for single radiation
wavelength operation using both the normal mode of op-
eration (where the wavelength is the fundamental) and in
the harmonic lasing mode, as described above, where the
wavelength is an odd harmonic. The wiggler must there-
fore have two different settings. In the first mode the rms
wiggler parameter aw � a1 and is set so that the funda-
mental resonant wavelength is �f � �1 giving harmonic
resonant wavelengths �h � �1=h, h � 3; 5; 7; . . . . In the
1-1 © 2006 The American Physical Society
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FIG. 1. Comparison of gain lengths as a function of a1 for a
fixed wavelength using the wiggler tuned for the harmonic lasing
scheme of (case 1): l3h (dashed line) and tuned for lasing at the
fundamental (case 2): l3f (solid line).
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second mode the wiggler parameter is reset to aw � an so
that the new resonant fundamental wavelength is equal to
the nth harmonic wavelength of the first mode setting, i.e.,
�f � �n. For the fixed beam energy and wiggler period
assumed here, it is simple to show from the FEL resonance
relation that a1 and an must, therefore, satisfy the relation:

1� a2
1

1� a2
n
� n: (4)

Hence, there are no real solutions an for a1 < ac �������������
n� 1
p

, and it is not possible to retune the wiggler to a
fundamental wavelength �f � �n.

The FEL scaling parameter, � � ��1�aw!p=ckw�2=3

[3,4], of Eqs. (1)–(3) is that for the wiggler parameter
aw � a1, i.e., when the wiggler is tuned so that the funda-
mental wavelength �f � �1. When the wiggler is tuned so
that the fundamental wavelength �f � �n then using iden-
tical scaling as Eqs. (1)–(3) and neglecting all harmonics
h > n, the FEL equations may be rewritten in the form:

d�j
d�z
�
pj
n

(5)

dpj
d �z
� �

an
a1
F1��n��Ane

in�j � c:c:� (6)

dAn
d �z
�
an
a1
F1��n�he

�in�i: (7)

The appearance of the factor an=a1 describes the reduced
FEL coupling as an < a1. Equations (1)–(3), truncated at
h � n, and Eqs. (5)–(7) form the working set of equations
for the remainder of this Letter.

Linear analysis using the methods of [4] allows the 1D
gain lengths of the FEL interaction to be calculated for the
two wiggler settings as described above. As was shown in
[3], the harmonic evolution of Eqs. (1)–(3) have two
separate regimes of evolution before the fundamental satu-
rates. For small values of the bunching at the fundamental,
both fundamental and harmonics are uncoupled and evolve
exponentially with gain lengths determined only by the
independent parameters. However, as the exponential
growth of the bunching at the fundamental wavelength
�1 progresses, the harmonics become strongly driven by
the interaction at the fundamental. In the cold-beam limit
this results in a dramatic reduction in the gain length of the
harmonic to 1=hth of that of the fundamental.

Here, we assume, as will be shown in subsequent sec-
tions, that the scheme of disrupting the exponential growth
of the fundamental works as described above and therefore
that there is no growth of the fundamental. The gain
lengths of a single wavelength � � �3 are compared for
the two cases: (1) 3rd harmonic interaction at wavelength
�3 with gain length l3h (fundamental is disrupted) and
(2) wiggler retuned to fundamental �f � �3 with gain
08480
length l3f. To aid in comparison, these gain lengths are
scaled with respect to the undisrupted fundamental gain
length l1f of (case 1). Using the results of [3,5] it can be
shown that:

l3h
l1f
�

�
F2

1��1�

3F2
3��1�

�
1=3

(8)

l3f
l1f
�

�
a1F1��1�

a3F1��3�

�
2=3
: (9)

These expressions are plotted in Fig. 1 as a function of the
wiggler parameter a1. The value of the retuned wiggler
parameter (case 2) is obtained from (4) with n � 3. It is
seen from the plot for l3f=l1f that the gain length l3f ! 1
as a1 !

���
2
p

. This is the limit a3 ! 0 in Eq. (4) where FEL
coupling ceases. Furthermore, note that the gain length for
the disrupted fundamental scheme of (case 1), l3h < l3f.
This is generally true for all odd harmonics n. Thus, the
important result is obtained that for a fixed period wiggler
and in the 1D cold-beam limit, when tuning an FEL
interaction to a shorter wavelength by a factor 1=n, the
FEL gain length is always shorter by using the disrupted
fundamental scheme of lasing than by a simple retuning of
the wiggler magnetic field [where that is possible under the
restrictions of Eq. (4)].

The system of FEL Eqs. (1)–(3) were also solved nu-
merically, with wiggler parameter a1 � 4, to demonstrate
the harmonic lasing scheme as described above. The re-
sults are shown in Fig. 2. A numerical solution of Eqs. (5)–
(7) is also shown on the same scale to demonstrate the
solution when the wiggler parameter is retuned to a3 �
2:16 so that �3 is the fundamental. The resonant, cold-
beam limit is assumed with an electron distribution pj �
08 j, so that the spread�p � 0. It is seen that for �z > 4 the
exponential instability of the fundamental scaled power is
1-2



FIG. 2. Scaled powers of fundamental jA1j
2 (solid line) and

third harmonic jA3j
2 (dotted line) for wiggler parameter a1 � 4

demonstrating the effects of relative phase changes of �� �
2�=3 at �z � 4; 5; 6; . . . ; 24. For the wiggler parameter retuned to
a3 � 2:16, A3 is the fundamental and a separate simulation
shows how jA3j

2 (dashed line) evolves.
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disrupted by the series of �� � 2�=3 relative phase
changes so that jA1j

2 � 1 throughout the interaction.
However, the simultaneous evolution of the third harmonic
is unaffected, remaining resonant and evolving exponen-
tially to saturation. Note that the powers jA1j

2
0 � 10�6 and

jA3j
2
0 � 10�8 where the 0 subscript indicates initial values

at �z � 0. The field A1 may therefore act as a seed field to
the electrons and transfer beneficial longitudinal coherence
properties to the shorter wavelength interaction for A3.

When the wiggler is retuned to a3 � 2:16, so that �3 is
the fundamental, it seen that the gain length is longer. The
relative gain lengths agree with the linear theory of above.
Despite the lower growth rate, however, the saturation
power is larger. It can be seen by comparing Eqs. (1) and
FIG. 3. The effect of energy spread on harmonic lasing. The
third harmonic jA3j

2 of Fig. 2 (dotted line) is plotted for scaled
Gaussian energy spreads in p of �p � 0:0, 0.1, 0.2, 0.3, 0.4, and
0.5. The growth rate decreases monotonically with �p. The
fundamental (solid line of Fig. 2) is not shown.
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(5) that, for the same energy spread, the phase velocity
spread is a factor n times larger for the case of harmonic
lasing. This reduces the electron energy spread and so the
radiation power at saturation for the case of harmonic
lasing.

The effect of an n-fold increase in the phase velocity
spread for harmonic lasing also increases the homogeneous
energy spread requirements of the electron beam at the
beginning of the interaction. For normal FEL interaction at
the fundamental this may be expressed as ��=� < � or
equivalently in the scaling used here �p < 1. For harmonic
lasing this requirement is increased to �p < 1=n. The
effect of this on harmonic lasing is clearly seen by compar-
ing the results of Figs. 3 and 4, where the results of Fig. 2
are extended to include the effects of initial Gaussian
energy spreads of �p � 0; 0:1; 0:2; . . . ; 0:5.

One can conclude that harmonic lasing at �3 is more
sensitive to the effects of electron beam energy spread than
fundamental lasing at �3 (if the requirement a1 > ac
makes this possible). The benefit of tuning the wiggler so
that the harmonic becomes the fundamental is therefore
that the spread in p is reduced by 1=n [see Eq. (5)] which
may well improve the growth rate above that of the har-
monic lasing scheme. Nevertheless, from Eq. (4), when
a1 < ac it is not possible to retune the wiggler so that the
harmonic becomes the fundamental. In the above a1 � 4,
well above the critical value ac �

���
2
p

.
In addition to describing the uncoupled linear evolution

of the fundamental and harmonic interactions, the work of
[3] showed that evolution of the bunching at the funda-
mental also drives the nth harmonic field at a growth rate of
n times that of the fundamental. This nonlinear coupling is
seen in Fig. 5, where the fundamental and harmonic fields
are plotted for a harmonic lasing scheme, here with a1 �
1< ac. A Gaussian energy spread parameter of �p � 0:1
FIG. 4. The effect of energy spread for a retuned wiggler
parameter of a3 � 2:16 making A3 the fundamental. The funda-
mental jA3j

2 of Fig. 2 (dashed line) is plotted for scaled Gaussian
spread in p of �p � 0:0, 0.1, 0.2, 0.3, 0.4, and 0.5. The growth
rate decreases monotonically with �p.
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FIG. 5. The scaled powers of jA1j
2 (solid line) and jA3j

2

(dashed line) for the case of phase changes of 4�=3 at
�z � 8; 9; . . . ; 24—i.e., after nonlinear coupling of fundamental
to the harmonic becomes significant around �z � 7. For phase
changes of 2�=3, the growth of the harmonic jA3j

2 (dotted line)
demonstrates less beneficial nonlinear coupling to the funda-
mental.
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is used. The plot shows the evolution of the fundamental
and third harmonic with phase changes of 4�=3 at �z �
8; 9; 10; . . . . The third harmonic is also shown for phase
changes of 2�=3 at �z � 8; 9; 10; . . . . (The fundamental is
not shown for this case.) According to linear theory, there
should be no difference between the harmonic lasing for
the two cases of 4�=3 and 2�=3 phase changes and this is
indeed the case until �z � 8:5. Thereafter, for 4�=3 phase
changes, the harmonic is seen to attain a saturation power
of approximately 2 orders of magnitude greater than that
for 2�=3 phase changes and also, not shown, approxi-
mately 1 order of magnitude greater than that if no phase
changes are applied and the fundamental evolves to satu-
ration in the usual way. The difference in behavior between
the two cases is due to the electron coupling with the
fundamental which continues to nonlinearly drive the
bunching at the harmonics. For the case of 4�=3 phase
changes the fundamental continues to bunch the electrons
in a way similar to that of [2] when phase changes of �
are used with the FEL interaction to enhance the bunching
at the fundamental. For 2�=3 phase changes, the funda-
mental interaction does not bunch the electrons as well,
however, greatly reducing the nonlinear driving of the
harmonic.

A scheme for ‘‘taming’’ the fundamental high-gain FEL
instability in a planar wiggler has been proposed in a way
that allows an odd harmonic to remain resonant and evolve
exponentially to saturation. The series of relative phase
changes between electrons and the ponderomotive wells
should not be difficult to implement. In particular, for FELs
requiring long interaction lengths and employing many
wiggler sections, typical of current vacuum ultraviolet to
x-ray FEL designs, phase-changing mechanisms between
wiggler sections already exist. An experiment to test the
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validity of the harmonic lasing scheme in such FELs would
therefore incur little or no cost. As with other schemes that
attempt to exploit harmonics in the reach toward shorter
wavelengths, electron beam quality is a limiting factor.
However, the energy spread requirement of the harmonic
lasing scheme, namely �p < 1=n, does compare favorably
with that for a High-Gain Harmonic Generation (HGHG)
scheme [6] for which the energy spread requirement is
�p < 1=nD, where D � ��	 d�=d� > 1 is the scaled
strength of the dispersive section between modulator and
radiator [7]. Harmonic lasing does, therefore, offer poten-
tially improved harmonic emission and may certainly en-
able single wiggler FELs to outperform their original
design specifications at shorter wavelengths. Of course,
one can also envisage hybrid systems which incorporate
the harmonic lasing interaction with multiwiggler schemes
[8] including HGHG. No attempt has been made here to
optimize the size of phase changes to attain higher satura-
tion powers. Trial simulations suggest that this is possible.

Other phase-changing schemes may also offer other
opportunities in controlling the electron-radiation interac-
tion. For example, phase changes post saturation may act
as a form of tapering to enable further energy extraction
from the electrons. In short, the general method is a poten-
tially useful tool and offers greater control of the FEL
interaction.
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