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A theory of turbulent transport is presented in two-dimensional magnetohydrodynamics with back-
ground shear and magnetic fields. We provide theoretical predictions for the transport of magnetic flux,
momentum, and particles and turbulent intensities, which show stronger reduction compared with the
hydrodynamic case, with different dependences on shearing rate, magnetic field, and values of viscosity,
Ohmic diffusion, and particle diffusivity. In particular, particle transport is more severely suppressed than
momentum transport, effectively leading to a more efficient momentum transport. The role of magnetic
fields in quenching transport without altering the amplitude of flow velocity and in inhibiting the
generation of shear flows is elucidated. Implications of the results are discussed.
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Shear flows and magnetic fields are commonly occurring
in a variety of systems and play a crucial role in determin-
ing the overall turbulent transport in these systems. One of
their important effects is the formation of transport barriers
as they can reduce turbulent transport dramatically via
shear stabilization and via Alfvénization. The crucial effect
of shear stabilization has been highlighted in laboratory
plasmas in recent years (e.g., [1–3]) and is now thought to
be an essential ingredient for the improved confinement,
which is necessary for a future economic reactor. It is also
important for controlling turbulent transport in many other
systems, including Earth’s atmosphere [4] and ocean [5],
major planets [6], the galaxies, and the Sun [7,8]. The
effect of magnetic fields on turbulent transport is no less
important, as demonstrated by a series of recent works. In
particular, it leads to a strong reduction in the so-called
alpha effect for a highly conducting fluid, considered to be
critical to the generation of mean magnetic fields (e.g.,
[9,10]). Furthermore, the backreaction of magnetic fields
on fluids can significantly slow down the effective dissipa-
tion rate (e.g., reconnection rate) of mean magnetic field
[9,11], the cross-field diffusion of passive scalar concen-
tration [12], and momentum transport [13].

In the mean electrodynamics, turbulent transport is char-
acterized by transport coefficients such as turbulent (eddy)
viscosity, and magnetic and particle diffusivities. The val-
ues of these coefficients are often estimated to be of order
vl� �cv

2, based on the characteristic amplitude v, length
scale l, and correlation time �c of a turbulent flow. The
characteristics of the turbulence (v, l, and �c) are, however,
altered by shear flows and magnetic fields in important,
nontrivial manners. In the case of shear flows, a strong
shearing can considerably reduce v, l, and �c through the
distortion and breakup of turbulent eddies, for example,
rendering �c inversely proportional to shearing rate [8]. As
a result, both turbulent transport and intensity can be
reduced [3]. In the case of magnetic fields, the suppression
of transport comes in mainly due to the change in �c, as
Lorentz force turns random turbulent flows into a packet of
Alfvén waves via magnetic tension. Therefore, magnetic
fields can lead to a considerable reduction in transport
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without much affecting turbulence intensity. A critical,
but poorly understood, issue is how shearing acting to-
gether with magnetic fields will modify turbulence and
thus transport. This problem has important implications
for turbulent transport in magnetized plasmas. Note that
the transport of magnetic fields and momentum was pre-
viously studied in the two-dimensional magnetohydrody-
namics (2D MHD), but only in the special case of the unit
magnetic Prandtl number (Pm � �=�) [13]. Here, � and �
are the viscosity and Ohmic diffusivity, respectively. Since
Pm is hardly of order unity in most physically relevant
situations, it is crucial to develop a proper theory which is
valid in general. On the other hand, the transport of parti-
cles has been studied mainly to understand the role of shear
flows in the formation of transport barrier in laboratory
plasmas [3]. The effect of magnetic field fluctuations,
however, becomes important as plasma beta (pressure)
increases, and thus should be incorporated for a theory of
the formation of transport barriers (e.g., [14]).

In this Letter, we investigate the transport of momentum,
magnetic flux, and particles in 2D MHD. We shall focus on
the strong shear limit (weak turbulence) where shearing is
more efficient than viscous dissipation and particle diffu-
sivity in the system, and obtain theoretical predictions for
turbulent transport via a quasilinear analysis. Note that the
results obtained using similar theoretical methods in [3]
were partially confirmed by a numerical computation [15].
We examine how and to what levels the transport of
particles, momentum, and magnetic flux and turbulent
intensities are reduced by shearing and magnetic fields,
affected by the disparity in the values of viscosity, Ohmic
diffusivity, and particle diffusivity. In particular, we show
that particle transport is suppressed more severely than
momentum transport, thereby effectively leading to a
more efficient momentum transport than mixing of chemi-
cal elements. And we elucidate the role of magnetic fields
in reducing transport without much effect on the fluctua-
tion level of turbulent flow and show via a simplified model
that magnetic fields slow down the generation of shear
flows by reducing the amplitude of Reynolds stress as
well as the cancellation of Reynolds stress by Maxwell
4-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.96.084504


PRL 96, 084504 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
3 MARCH 2006
stress. Overall, various transport tends to be quenched
more significantly, compared with the hydrodynamic
case. Some of the interesting implications for astrophysical
and laboratory plasmas shall be discussed.

The evolution equations for the vorticity! and magnetic
vector potential a in 2D MHD in (x; z) domain are as
follows:

�@t � u � r�! � ��b � r � r2a� �r2!� F; (1)

�@t � u � r�a � �r2a; (2)

�@t � u � r�n � Dr2n: (3)

Here, b � r� aŷ � ��@za; 0; @xa�, !ŷ � r� u �
�@xuz � @zux�ŷ, and F is the external small-scale forcing.
�, �, and D are the viscosity, Ohmic diffusion, and diffu-
sivity of chemical elements n. In the following, we assume
that � < �, which is likely to be the case in the interior of
the Sun and laboratory plasmas, and consider the quasi-
linear evolution of fluctuations a0, b0, u0, and !0 around
mean fields U � �z�x̂��> 0�, B � Bx̂, and n0�z�. We
capture the strong shearing effect nonperturbatively by
using the Gabor transform for fluctuations !0, a0, b0, u0

and F (see [3,13]), denoted by !̂, â, b̂, û, and F̂, and obtain

	Dt � ��k
2 � p2�
!̂ � iBk�k2 � p2�â� F̂; (4)

	Dt � ��k2 � p2�
â �
ik

k2 � p2 !̂B � ûzB; (5)

	Dt �D�k
2 � p2�
n̂ � ��@zn0�ûz: (6)

Here, Dt � @t �U@x � k�@p is the total time derivative,
and k � �k; 0; p�. We are interested in the case of strong
shear where shearing occurs much faster than any dissipa-
tive process in the system with �� � �k2=�� 1, �D �
Dk2=�� 1, and �� � �k2=�� 1. Note that �� < ��
due to the assumption � < �. In this limit, the coupled
equations (4) and (5) can be solved for strong magnetic
field such that Alfvén frequency associated with typical
forcing characteristic scale 1=k is larger than shearing rate,
i.e., � � jBk=�j � 1. Note that this is likely to be the case
for a wide range of k > 1=H0 in the solar tachocline where
strong toroidal magnetic field of order 104–105 G and
radial rotational shear of �3� 10�6 s�1 are thought to
be present. Here, H0 � 6� 109 cm is the pressure scale
height at the bottom of convection zone. A similar analysis
performed in [13] then gives us the solution:

â�k;x; t� �
i

k
�����������������
k2 � p2

p Z
d2x1d

2k1

Z t

0
dt1g�t:t1�

�
jk1j�����������������
k2

1 � p
2
1

q  1 sin’e�F̂�k1;x1; t1�: (7)
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k4

1

2�2�k2
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2
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2
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g�t:t1� � ��k � k1���p � p1 � k��t � t1����z � z1� �
��x � x1 � U�t � t1��. From Eqs. (4)–(7), various corre-
lation functions for �T , DT , and �T (ha0u0zi � �TB,
hn0u0zi � �DT@zn0, and hu0xu0zi � �T�) and turbulence
intensities can be obtained for a given statistics of the
forcing, which is, for simplicity, taken to be homogeneous
and stationary with a short correlation time �f. The results
obtained to leading order in small parameters 1=�, ��, �D,
and �� are as follows:

�T �
�f

4B2

Z d2k

�2��2
	̂�k�
k4

2��13�

32=3
�2=3
� � ��2=3

�
v2

B2 ; (8)

�T �
�f

4B2

Z d2k

�2��2
	̂�k�
k4 � �

v2

B2 ; (9)

DT �
�f

4B2

Z d2k

�2��2
	̂�k�
k2

2��13�

32=3
�D�

�1=3
� �

D
�
�T; (10)

hn02i �
�f��@zn0�

2

4�B2

Z d2k

�2��2
	̂�k�
k4 � �@zn0�

2��
v2

B2 ; (11)

hu02z i �
�f�

4�

Z d2k

�2��2
	̂�k�
k2 � �

1=3
� hu02i � ��v

2: (12)

Here, ��x� is a Gamma function; 	̂�k� is the power spec-
trum of the forcing (hF2i �

R
d2k	̂�k�=�2��2), which is

assumed to be dominated by modes with p=k� 1 for
simplicity. In light of the Goldreich-Sridhar theory [16],
initial wave packets driven by the forcing thus have small
aspect ratio p=k � k?=kk � 1, justifying the assumption
of weak turbulence. A large k? is, however, developed
mainly due to shearing effect in our weak turbulence
theory, which is valid when the shearing rate is larger
than the eddy turnover time. To appreciate the effects of
shear and magnetic fields, the last terms in (8)–(12) are the
estimates given in terms of the amplitude of the flow
velocity v in the absence of magnetic fields and shear
flow (� � 0 and B � 0), which can easily be shown to
be v2 � �fhF

2i=�k4. Here, 1=k is the characteristic scale
of the forcing. Equations (8)–(12) clearly show how tur-
bulent transport and intensities are reduced for strong
magnetic field (large B) and for strong shear (small ��,
��, and �D). First, while all transport coefficients (�T , DT ,
and �T) as well as density fluctuation (hn02i) are quenched
via magnetic fields, the amplitude of turbulent flow hu02i or
hu02z i in Eq. (12) is suppressed only by shearing. This is
because of the subtle effect of magnetic fields in increasing
the memory time of a turbulent flow without affecting its
amplitude. This suggests an interesting possibility of a
significant reduction in transport by magnetic fields with
less change in turbulence intensity. To quantify this, we
obtain the cross phase—the flux normalized by turbulence
intensity—as follows:

cos� �
hn0u0zi�������������������
hn02ihu02z i

q � �2=3
D ��1

�
D
�

�
1=3
: (13)

For a fixed value of D=� and � � Bk=�, Eq. (13) be-
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comes small as shearing increases (i.e., for small �D), with
the scaling cos� / ��2=3. In our model, cos� is further
reduced for strong magnetic fields (�� 1) as well as small
particle diffusivity (D<�). Note that shear stabilization
tends to reduce both turbulent transport and intensity with
only modest reduction in the cross phase [3] since the
distortion and breakup of eddies by shearing tend to sup-
press turbulence intensity through enhanced dissipation in
addition to transport. Second, unlike other quantities, the
eddy viscosity �T in Eq. (9) depends only on B. This
small positive �T is a result of the cancellation of
Reynolds stress by Maxwell stress, while Reynolds stress
alone would have resulted in �T < 0. The effect of mag-
netic field on �T will later be elaborated more in a simpler
model. Third, the scaling of �T can be made more trans-
parent by expressing it in terms of total flow velocity
amplitude hu02i � v2���

�1=3
� , as �T � �hu02i=B2. This is

the Zeldovich theorem as a result of conservation of square
of magnetic potential. Fourth, compared with the diffusion
of magnetic field, particle diffusion is slower by a factor of
D=�, as can be seen from Eq. (10). When � � D, Eq. (10)
recovers the expected result �T � DT , since, in this case,
particles evolve exactly the same as magnetic fields.
Similar results were also found in the absence of shear
flows [12]. Finally, the comparison between Eqs. (9) and
(10) reveals that

DT

�T
� �2=3

D �D=��
1=3 � 1;

for �2
D � �=D, which is true for strong shear (�D � 1).

That is, shear flows acting together with magnetic fields
inhibit the mixing of particles more severely than momen-
tum transport, effectively leading to a more efficient mo-
mentum transport than particle transport. Importantly, this
is in contrast to the three-dimensional hydrodynamics
(HD), where the transport of momentum and particles is
reduced to a similar level with the scaling �T �DT ���2

[8]. Note that while the result of a more efficient momen-
tum transport than particle transport is still valid for
D=� � 1 (i.e., DT=�T � �

2=3
� � 1), when D=�< 1

(e.g., relevant to the solar interior), this effect is further
boosted by a factor of D=� as DT=�T � �

2=3
D �D=��

1=3 �

�2=3
� �D=��< �2=3

� for fixed �. One of the interesting im-
plications of this result concerns the angular momentum
transport versus mixing of light elements (lithium) in
stellar interior. Mixing of light elements taking place in
stellar interior can be inferred from their surface depletion,
and observational evidences have suggested that the mix-
ing of these elements occur on longer time scale than the
redistribution of angular momentum (see, e.g., [17]).
Unfortunately, for the lack of a fundamental theory derived
from the first principle, this observational constraint has
often been crudely parametrized in models. In contrast, our
result offers a robust mechanism in which angular momen-
tum transport can take place more efficiently than mixing
of these elements in a consistent way.
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We recall that the results obtained above are valid in the
case of strong magnetic fields. To complement these re-
sults, we now consider a simplified model which permits us
to examine various properties of turbulence as the strength
of magnetic fields continuously changes. To this end, we
assume that magnetic fluctuations are stationary as the
advection of magnetic fields by a turbulent flow is balanced
by efficient Ohmic dissipation [Dtâ � 0 in Eq. (5)]. By
usingBûz � ��k2 � p2�â � 0 in Eq. (4), we can obtain the
following exact solution:

!̂�k;x; t� �
Z
d2k1d2dx1

Z t

0
dt1g�t:t1�e F̂�k1;x1; t1�:

Here, 
 � B2=��;  � �
	tan�1�pk� � tan�1�p1

k1
�
 �

�	k2t� p3

3�k� �k
2
1t1 �

p3
1

3�k1
�
; g�t:t1� � ��k� k1���p�

p1 ��k�t� t1����x� x1 �U�t� t1����z� z1�. Then,
by using the same forcing correlation function as before,
we can obtain the following results to leading order in
�� � �k2=�� 1 and �D � Dk2=�� 1:

�T �
��f
4�2

Z d2k

�2��2
	̂�k�
k2

�
I1�
� �

�
B
�k

�
2
I2�
�

�
; (14)

DT �
�f

2�2

Z d2k

�2��2
	̂�k�
k2 I3�
�; (15)

hn02i �
�f�@zn0�

2

�3

Z d2k

�2��2
	̂�k�
k2

��1=3�

3
I4�
�; (16)

hu02z i �
�f
4�

Z d2k

�2��2
	̂�k�
k2 I5�
�: (17)

Here, I1 � f2=�1� 
2�, I2�f2	5=16�
2�1��
3=16�
2�9�
�f1=2�
2�4�, I3��1�e

��
=2�2=
2, I4�

f�3=2���1=3 � 2	3=��� � �D�
1=3e��
=2 � �3=2�D�1=3 �
e��
g=
2, I5�f1=
�
f2=�
2�1�, f1 � 1� e��
,
and f2 � 1� e��
. The Ii’s in Eqs. (14)–(17) are the
functions of 
 � B2=��, containing the effects of mag-
netic field. Figure 1(a) explicitly shows that Ii’s monotoni-
cally decrease as 
 increases, manifesting the suppression
of turbulent transport and intensities by magnetic fields.
First, for small 
� 1, I3 in Eq. (15) becomes �2=4,
yielding DT / ��2. That is, particle transport is quenched
by shearing for small 
. As magnetic field (
) becomes
large, I3 becomes monotonically very small; for a suffi-
ciently large 
, DT is suppressed mainly by magnetic
fields, with the scaling DT / B

�4. Second, the eddy vis-
cosity �T in Eq. (14) contains the two parts, Reynolds
stress �hu0xu0zi� / I1 and Maxwell stress �hb0xb0zi� / I2. As
I1 is positive, Reynolds stress gives rise to negative �T
(inverse cascade), leading to the generation of shear flows.
The amplitude of Reynolds stress I1 decreases as the
strength of magnetic field increases due to the Lorentz
force, making �T less negative, and thus slowing down
the generation of shear flows. In addition, Maxwell stress
4-3



FIG. 1. (a) I1 (solid line), I2 (dotted line), I3 (dashed line),
I4=10 (dash-dotted line), and I5 (dash-dot-dot-dotted line) plot-
ted as a function of 
 � B2=�� for �� � �D � 10�3;
(b) Cross-phase cos� plotted as a function of 
 for �D � 10�5

(solid line), 10�4 (dotted line), and 10�3 (dashed line).
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with I2 > 0 cancels part of Reynolds stress, further inhib-
iting the generation of shear flows with smaller negative
�T . However, �T remains negative in this model since the
contribution from Maxwell stress cannot exceed Reynolds
stress for B=�k & 1, as required for the approximation of
stationary magnetic fields to be valid. This is in contrast to
the previous case where magnetic fluctuations are strong
enough to render �T > 0. Third, Eqs. (15)–(17) reveal how
the cross-phase cos� for particle transport varies as 

increases. To see this clearly, we plot cos� in Fig. 1(b) as
a function of 
 � B2=�� for the three different values of
�� � �D � 10�5 (solid line), 10�4 (dotted line), and 10�3

(dashed line) with � � D. As can easily be seen, cos�
becomes very small as magnetic field (
) increases. This is
similar to what happens in the previous case with nonsta-
tionary magnetic fluctuations, although in that case, only
the asymptotic behavior was found in the limit of strong
magnetic fields. Note also that for a given value of 
, cos�
decreases for stronger shear (i.e., smaller �D).

To summarize, we have presented a theory of turbulent
transport of particle, momentum and magnetic flux in 2D
MHD. The resulting transport coefficients and turbulence
intensities, in general, are more severely reduced compared
with HD case, with different dependences on shearing rate,
magnetic field, and the values of viscosity, Ohmic diffu-
sion, and particle diffusivity, some of them being quenched
more strongly than others. In particular, particle transport
was shown to be suppressed more severely than momen-
tum transport, thereby leading to a more efficient transport
of momentum than particles, due to the combined effects
of shear and magnetic fields, together with D=�< 1.
D=�< 1 also leads to smaller values of DT=�T and cross
phase. The effect of magnetic fields was studied in detail
through a simplified model of stationary magnetic fields,
which explicitly showed how magnetic fields inhibit the
particle transport and slow down the generation of shear
flows (e.g., zonal flows). Particular attention was paid to
the possibility of reducing transport of particles, without
much quenching fluctuation levels due to magnetic fields.
These results highlight the important role that magnetic
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fields as well as shear flow play in transport, which has
often been overlooked. For instance, they can offer a robust
mechanism to explain a more efficient angular momentum
transport compared with mixing of light elements in stellar
interiors. The theoretical predictions should be incorpo-
rated in constructing a consistent model of the evolution of
rotation, magnetic fields, and chemical species in astro-
physical plasmas, where traditionally transport coefficients
are heavily parametrized and then fine-tuned to obtain
agreements with observations. Of particular interest would
be the application to the solar tachocline where the inter-
play between strong toroidal magnetic fields and rotational
shear is crucial to the dynamics in that region. The results
should also serve as valuable guides to understand the
interaction between shear flows (e.g., zonal flows) and
magnetic fields and their effects on transport reduction in
the formation of transport barriers in other physical sys-
tems, including laboratory plasmas. The works addressing
these issues will be published in future papers.
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