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Dynamical Control: Comparison of Map and Continuous-Flow Approaches
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Continuous and pulsed forms of control of a multistable system are compared directly, both theoreti-
cally and numerically, taking as an example the switching of a periodically driven class-B laser between
its stable and unstable pulsing regimes. It is shown that continuous control is the more energy efficient.
This result is illuminated by making use of the close correspondence that exists between the problems of
energy-optimal control and the stability of a steady state.
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Ensuring the stability and effective control of a lasing
mode represents an important problem in the applied the-
ory of lasers [1]. It can be mapped onto analyses of spiking
behavior in population dynamics [2] and neurons [3] and,
in a more general context, appears as a fundamental prob-
lem in the theory of nonlinear dynamical systems [4,5]. It
is potentially of relevance wherever switching takes place
between distinct regimes of behavior, e.g., in cardiac and
cortical systems. While the topic is thus of broad interdis-
ciplinary interest, laser systems can provide especially
reliable and convincing tests of the new theoretical con-
cepts. In general, the problem can be analyzed within
either one of two distinct theoretical and experimental
frameworks: using either continuous or discrete time,
with corresponding descriptions of the system dynamics
in terms of either continuous flows or maps. Both methods
have been extensively tested in application to laser sys-
tems. For example, a special protocol has been developed
for the feedback control of Nd lasers [6]. To reduce uncer-
tainty in switching, methods based on stochastic resonance
have been proposed [7,8], with the addition of a weak
periodic modulation. The targeting of stable and saddle
orbits has been discussed [9] and achieved experimentally
by the use of a single impulse in a loss-modulated CO2

laser [10,11] paying special attention to minimization of
the duration of the transient processes. Optimization of
switch-on properties in semiconductor lasers has been
considered by exploring phase space [12] and via the
minimal-time control problem [13]. That no direct com-
parison between these two general approaches for control
has yet been made is perhaps surprising, given its broad
interdisciplinary implications.

In this Letter we consider, both theoretically and nu-
merically, a direct comparison between continuous and
discrete time approaches to control the lasing mode in
class-B lasers. In particular, we show that the continuous
method is the more energy efficient: the activation ‘‘ener-
gies’’ and the energies of the control functions differ by an
order of magnitude. We use the duality of the control and
stability problems discussed previously [14,15] to provide
insight into the origin of this difference.
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Coexistence of nonstationary states can be realized in
lasers by, e.g., periodic modulation of intracavity loss [10]
or pumping rate [16]. Here we study the latter, which is
more suitable for class-B solid-state lasers. We start from
the single-mode rate equations [16,17]:

_u � vu�y� 1�; _y � q� k cos�!t� � y� yu� f�t�;

(1)

where u and y are proportional to the density of radiation
and carrier inversion, respectively, v is the ratio of the
photon damping rate in the cavity to the rate of carrier
inversion relaxation, and the cavity loss is normalized to
unity. The pumping rate has a constant term q plus an
external periodic modulation of amplitude k, frequency !;
f�t� is an additive unconstrained control function.

For class-B lasers v is large, v� 103–104, and spiking
regimes occur under deep modulation of the pumping rate.
Solutions can be obtained from the corresponding two-
dimensional Poincaré map [18]:

ci�1 � q�G�ci;  i�e
�T � K cos�!T �  i� � fi;

’i�1 � ’i �!T; mod2�;
(2)

whereG�ci; i��ci�g�q�Kcos i,K�k�1�!2��1=2,
and  i � ’i � arctan�!�. The control function fi is now
defined in discrete time. The functions g � g�ci� and T �
T�ci; ’i� are given by nonlinear equations [18]. The vari-
ables ci; ’i correspond to the population inversion y�ti� and
phase of modulation ’i � !ti;mod2�, at the instants ti of
impulse onset when _u�ti�> 0, _u�ti�> 0; g�ci� denotes the
energy of the impulse; and T�ci; ’i� gives the time interval
between sequential impulses. The map has been derived by
asymptotic integration of Eq. (1) to an accuracy ofO�v�1�.
It is therefore valid for q; k;!� v and ci > 1�O�v�1�.

For each iteration of the map, one can find character-
istics directly comparable with experiment: ’i is the phase
of the modulation signal at the instant of the spike and
T�ci; ’i� is the interval between impulses, the energy of the
spike, and its maximal intensity being given by umax �
1� v�ci � 1� ln�ci�	 [18]. Period-1 fixed points of the
map determine spiking solutions at periods Tn � nTM,
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n � 1; 2; . . . , multiple to the driving period TM � 2�=!.
By using the map (2) we determine analytically regions of
multistability and we can approximate the location of
saddles and stable cycles.

We now set v � 10 000, q � 1:9, k � 0:75, and ! �
71:6 and consider controlled migration from stable cycles
to saddle cycles of the same amplitude and period: specifi-
cally, from the stable cycle C3 to the saddle cycle S3, i.e.,
where both cycles are of period 3 relative to the external
modulation. We consider two different forms of control
force f�t�: one is continuous fc�t� in time, and the other is a
sequence of discrete impulses fd�t� applied at the instants
when the system crosses the Poincaré section u�ti� � 1,
_u�ti�> 0, i.e., coinciding with the laser spikes; fd�t� �
Afi, if t 2 �ti; ti � �c	, and fd�t� � 0 otherwise. To deter-
mine the force fd�t� we first solve the control problem for
the map (2) and obtain fi. The force fi can be reproduced
in the original system (1) with a series of short impulses,
keeping the position and relative amplitudes of impulses.
So to transform we determine an amplitude coefficient A,
such that f�t� � Afi, as the minimum factor by which we
have to multiply fi to induce the migration between cycles
in the flow system (1). For the method to be valid, the
duration �c of the control impulses should not exceed the
duration of the laser spikes �v�1.

We wish to solve the following energy-optimal control
problem: How can the system (1) with unconstrained con-
trol function fc�t� or fi be steered between coexisting
states such that the ‘‘cost’’ functional Jc or Jd,

Jc � inf
f2F

1

2

Z t1

t0
f2�t�dt; Jd � inf

f2F

1

2

XN
i�1

f2
i ; (3)

is minimized? Here t1 (or N) is unspecified and F is the set
of control functions.

The solution of this problem is in general a very com-
plicated task. But, if a solution exists, it can [14,15,19] be
identified with the solution of the corresponding problem
of optimal fluctuational escape: Pontryagin’s Hamiltonian
[20] in control theory can be identified with the Wentzel-
Freidlin Hamiltonian [5] of the theory of fluctuations, and
the optimal control force can be identified with one of the
momenta of the Hamiltonian system [14,15,19]. It was
therefore suggested that the optimal control function
fc�t� or fi can be found via statistical analysis of the
optimal fluctuational force [14,15,19,21–23]. In this tech-
nique the control functions fc�t� and fi in (1) and (2) are
replaced by additive white Gaussian noise and the dynam-
ics of the system is followed continuously. Several dynami-
cal variables of the system and the random force are
recorded simultaneously, and the statistics of all actual
trajectories along which the system moves in a particular
subspace of the coordinate space are then analyzed [24–
26]. The prehistory probability distribution of trajectories
moving the system from the equilibrium state to the remote
state is sharply peaked about the optimal fluctuational path,
thereby providing a solution to the control problem. We
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note that this technique provides an experimental solution
of the problem, which is especially useful from the point of
view of applications.

For continuous control, it is useful to change variables
� � v�1=2, � � ��1t, � � �!, z � ��1�y� 1�, and x �
lnu. Following Pontryagin’s theory of optimal control, we
then reduce the energy-minimal migration task to bound-
ary problems for the Hamilton equation (cf. [14,15,19]).

_x� z; _z� q� 1� kcos���� � ex�1� �z� � �z�p2;

_p1 � p2ex�1� �z�; _p2 ��p1�p2��1� ex�; (4)

with the boundary conditions [27]

�x��s�; z��s�; p1��s�; p2��s�� 2 �u;

�x��e�; z��e�; p1��e�; p2��e�� 2 �s;
(5)

where �u is an unstable manifold of C3 and �s is a stable
manifold of S3; �s and �f are initial and final times,
respectively. Thus the boundary conditions (5) specify a
heteroclinic trajectory of the system (4) (see [28,29] for
details). The variable p2 gives the control function f.

The solution of the boundary problem (4) and (5) for the
transition C3 ! S3 was found by the shooting method
starting from a guess derived from the prehistory approach
[30]. The corresponding solution [x���, p2���] is shown in
Figs. 1(b) and 1(c). Numerical simulations confirm that the
control function f��� � p2��� thus obtained does indeed
induce migration from the cycle C3 to the cycle S3 in the
optimal regime. Similar results are obtained for transition
C2 ! S2.

For a discrete time system, the Pontryagin theory of
optimal control can be extended to obtain an area-
preserving map:

ci�1 � q�G�ci;  i�e�T � K cos�!T �  i� � pci�1;

’i�1 � ’i �!T; mod2�;

pci�1

p’i�1

 !
�

@ci�1

@ci
@ci�1

@’i
@’i�1

@ci
@’i�1

@’i

0
@

1
A�1

pci
p’i

 !
; (6)

with the boundary conditions

�cs; ’s; pcs; p
’
s � 2 �s; �ce; ’e; pce; p

’
e � 2 �u; (7)

where s and e are the initial and final instants of time, and
�u and �s are an unstable manifold of C3 and a stable
manifold of S3, respectively; pci determines the control
function fi. The corresponding boundary value problem
(6) and (7) for the transition C3 ! S3 can be solved by
either the prehistory approach or a shooting method.
Because of the complexity of the map, however, the accu-
racy of each method is limited and allows us to identify
only a nearly optimal pulsed control function. The results
of such an analysis for C3 ! S3 in (2) are shown in Fig. 2.
The prehistory approach gives somewhat better results, the
corresponding energy Jstat

d 
 3:58� 10�6 being less than
that found by the shooting method, Jshoot

d 
 3:7� 10�6
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FIG. 2 (color). (a) Basins of attraction for the map (2), indicat-
ing some stable cycles C and saddle cycles S. Different colors
correspond to the basins of different cycles. (b) Migration tra-
jectory from C3 to S3 in the map (2), and (c) realizations of the
corresponding control force. Dashed lines and markers + corre-
spond to solutions of the boundary problem, and the solid line
with � indicates the solution based on fluctuational prehistory
analysis.

FIG. 1 (color). (a) Basins of attraction for the flow system (1),
indicating some stable cycles C and saddle cycles S. Different
colors correspond to the basins of different cycles. The cycles
C1, C2, C3 and S2, S3 correspond to one pulse periodic motion,
i.e., a fixed point in the Poincaré section; the cycles CP and SP
correspond to three pulses periodic motion, i.e., a period-3 fixed
point. Time realizations of the coordinate x�t� (b) and control
force f�t� (c) are shown during migration from C3 to S3. The
stable cycle C3 and saddle cycle S3 are marked by � and �,
respectively.
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(and twice smaller than that of a single control impulse
Jsingle
d 
 8:4� 10�6). Similar results are obtained from an

analysis of the optimal transition C2 ! S2. As a next step,
we define (see above) a value of A for each type of pulsed
control function, in order to apply the map results to the
continuous system (1).

We have calculated directly the dependence of the en-
ergy (3) of the pulsed control function fd�t� on the pulse
duration �c, finding that there is a minimum, i.e., an
optimal duration �opt

c , for which (3) is minimal. The opti-
mal duration turns out to be less than the duration of a laser
spike, so that (see above) the map (2) is applicable.

A direct comparison between the continuous and differ-
ent pulsed methods of control is given in Table I. It shows
that continuous control is energetically far more efficient
then pulsed control. That can be explained by the short
duration � of impulses of the pulsed force. In turn, a pulsed
control function consisting of a sequence of impulses
(multipulsed force) is more efficient than a single-pulse
control function. It is evident that the energies of the pulsed
control functions can be decreased by orders of magnitude
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by optimization of the impulse duration. Even so, the
optimized energy of the pulsed control function still ex-
ceeds the energy of the continuous force by 2 orders of
magnitude.

We have also investigated the influence of the phase
relationship between the single control impulse and the
laser oscillations, i.e., the different Poincaré sections when
the single control impulse acts [30]. We found that (i) the
control energy Jic changes with phase by a factor of up to
2� and (ii) the map (2) is close to the optimal phase
relationship (cf. values of Jin

c and Jiopt in Table I).
Although the continuous and discrete laser models de-

scribe the system dynamics well on long time scales and
yield quantitatively similar basins of attractions for the
stable limit cycles [cf. Figs. 1(a) and 2(a)], estimates of
stability and of the energies of optimal control functions
may differ by a large factor. A possible reason lies in the
particular form of control function fi in the map (2): we
choose a force that is additive in the map. So we might
expect a different conclusion for another form of control
function fi. The latter can be identified by detailed inspec-
tion of the continuous function f�t� in Fig. 1(c), which has
a complex structure; but it can be emulated by a sequence
of impulses of duration close to the period of the cycle C3

or to the time interval 3TM between laser spikes. We also
note that external driving changes the value of the pump,
i.e., of q. Hence we can suggest a new form of control for
the map:

ci�1 � qi �G�ci;  i; qi�e�T � K cos�!T �  i�;

’i�1 � ’i �!T;mod2�; qi�1 � qi � fi;
(8)

where q remains constant between Poincaré sections and
3-3



TABLE I. The energy of the optimal control function for controlling migration between cycles in the continuous system (1),
expressed in dimensionless units. Jc corresponds to the continuous function obtained by solution of the boundary problem (5) for the
system (4). The energy Jpc corresponds to the multipulsed control functions determined by the prehistory approach, whereas Jic
corresponds to a single impulse function. The energies Jpc and Jic were determined for very short-duration control impulses �c � TM,
approximating � functions, where TM is the period of the external pumping. The energies Jpopt

c and Jiopt
c correspond to the multipulsed

and single-pulse control functions, respectively, with an optimal duration �opt
c . The energies Jpn

c and Jin
c were determined for the map

(8) and correspond to a multipulsed and single-pulse control functions, respectively. The value Jiopt was obtained by double
optimization of the duration of the single control impulse and of the location of Poincaré section.

Transition Jc Jpc =J
popt
c Jic=J

iopt
c Jpn

c Jin
c =J

i
opt

C3 ! S3 0.000 04 0:082 75=0:002 75 0:16=0:005 0.000 077 0:0001=0:000 098
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changes at each cross section. For (8) we formulate the
same boundary problem as for (2), and we use the same
method to determine the control function. The results of a
prehistory analysis and for a single impulse are presented
in two last columns of Table I. The energy of the control
function is significantly decreased, but it is still nearly
twice as large as that of the continuous function.

Summarizing, we have found the energy-optimal control
function for effecting migration of a class-B laser from its
stable limit cycle to a saddle cycle, for both continuous and
discrete descriptions of the laser. This allows us to compare
the efficiency of the two techniques directly, for the first
time, showing that continuous control is the more energy
efficient and provides more accurate estimates of the
stability of quasistable states. The fact that the optimal
form of continuous force [Fig. 1(c)] is closer to a sequence
of impulses than to a harmonic force allows us to suggest a
pulsed control function approaching continuous efficiency.
We note that specific targeting of periodic orbits has been
achieved experimentally by single-shot perturbation of
intracavity losses in a CO2 laser [31,32] that can be de-
scribed by the continuous and discrete laser equations used
in this Letter. The results obtained can be verified directly
in experiment and therefore applied, e.g., to phase coding
information schemes.
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