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Unprecedented optical nonlinearities can be generated probabilistically in simple linear-optical net-
works conditioned on specific measurement outcomes. We describe a highly controllable quantum filter
for photon number states, which takes advantage of such a measurement-induced amplitude nonlinearity.
The basis for this filter is multiphoton nonclassical interference which we demonstrate for one- and two-
photon states over a wide range of beam splitter reflectivities. Specifically, we show that the transmission
probability, conditional on a specific measurement outcome, can be larger for a two-photon state than a
one-photon state; this is not possible with linear optics alone.
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Experimental quantum optics faces considerable chal-
lenges in the controlled creation, detection, and manipula-
tion of light. Without strong photon-photon interactions or
optical nonlinearities, it is very difficult to arbitrarily ma-
nipulate the distribution of photons within an optical beam
[1]. A great deal of effort has been concentrated on this
problem since it is also a major hurdle for optical quantum
computation. With that purpose in mind, it was found that
huge probabilistic nonlinearities can occur in linear-opti-
cal systems supplemented by extra “‘ancilla’ photons and
projective measurement [2]. The nonlinearities produced
by this method are so strong that pairs of photons effec-
tively interact. Experimental demonstrations of dispersive
or phase nonlinearities [3] and quantum logic gates [4,5]
have been performed based on these techniques [6]. These
linear optics methods create, in general, a complex mix of
phase and amplitude nonlinearities. Amplitude nonlineari-
ties, and absorption in general, are undesirable for quantum
computation since they can result in information loss.
However, amplitude nonlinearities are potentially powerful
for controlling the mode properties and photon statistics of
weak light beams [7]. Measurement-induced amplitude
nonlinearities build on previous techniques using photon
addition or subtraction and ‘‘quantum scissors’” which use
conditional measurements to modify the quantum state of a
light beam [8]. In the present work, we demonstrate a
measurement-induced amplitude nonlinearity that can be
used to completely remove a single component from a
superposition of photon number states. This constitutes a
quantum filter that acts as a highly controllable n-photon
absorber [9].

Consider the optical schematic shown in Fig. 1. An
n-photon state is incident in mode 1 and an ancilla photon
is incident in mode 2. The beam splitter implements the
linear-optical transformation a; — tas + ra, and a, —
ras — tay, where r(t) are real reflection (transmission)
amplitudes, and q; is the lowering operator for mode i. If
the photons are indistinguishable, the amplitude to find a
single (i.e., one and only one) photon in mode 3, and hence
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n photons in mode 4, is given by the expression Ay (n) =
VR"'[R — n(1 — R)], where R = 12 is the reflectivity of
the beam splitter [3,10]. This amplitude is a result of the
quantum interference between the two paths leading to a
single photon in mode 3. Either all n + 1 photons reflect at
the beam splitter, or the ancilla and one photon from the
n-photon state are transmitted and the remaining n — 1
photons are reflected. The second process can occur n
different ways and is therefore weighted more heavily for
higher n. Squaring the amplitude, we obtain the probability
to find a single photon in mode 3 and » photons in mode 4,

Py, =R"'[R—n(1 - R)J. (D

We define Py; as the conditional transmission probability
for the quantum filter.

We consider a general pure state in mode 1, |¢), =
>® , cnln)y, in which the complex amplitudes, c,,, satisfy
> ;le,|> = 1. A single ancilla photon is incident in
mode 2. Following the transformation implemented by
the beam splitter, measurement of a single photon in

n-photon
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FIG. 1. Schematic setup for the quantum filter. An n-photon
state in mode 1 and ancilla photon in mode 2 are incident on a
beam splitter with reflectivity, R. The probability to find a single
(i.e., one and only one) photon in mode 3, and hence n-photons
in mode 4, is Py, =R"'[R— (1 — R)n]*>. When R =n/
(n + 1), one never finds a single photon in the output mode 3.
By the linearity of quantum mechanics, if the input state had
contained a superposition of photon number states, and a single
photon was found in mode 3, the n-photon component would be
completely removed from the output state.
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mode 3 yields some information about the remaining num-
ber of photons in mode 4. This information is due to
dependence of the amplitude, Ay;, on n and leads to the
nonunitary transformation |¢); — [¢), = N Y2 X
VR [R — n(1 — R)]c,|n),, where the normalization co-
efficient, NV, is a function of ¢, and R.

The most important consequence for this work is that for
R=n/(n+1), Py, = 0. For this specific R, theory pre-
dicts that when an n-photon state enters the filter, a single
photon never emerges in mode 3. By the linearity of
quantum mechanics, if the input state was a superposition
of number states containing |n) and a single photon was
found in mode 3, the output state no longer contains |n).
In this sense, the device acts as a conditional n-photon
absorber. The transformation implemented by the filter has
other important features. It is diagonal in the Fock state
basis and therefore only those Fock states contained in the
initial state can be in the final state. Furthermore, the
dependence on a specific measurement outcome makes
the transformation both probabilistic and, in general, not
unitary.

The filter relies on quantum interference and thus indis-
tinguishability plays a central role. If a time delay is
introduced between the ancilla and the n-photon state
such that they no longer arrive at the beam splitter simul-
taneously, then the interference giving rise to Eq. (1) is
destroyed. Instead, a classical mixture arises because either
all of the photons are reflected and the output photons
remain in a single pulse, or the ancilla and an input photon
are exchanged by transmission through the beam splitter
and the output consists of n — 1 photons in one pulse and a
single photon in a temporally separate pulse. The proba-
bility for this classical mixture to arise is Py, = R""! +
R""'(1 — R)*n. The time delay is controlled in our experi-
ment to compare the evolution when interference occurs to
those cases where it does not.

For a single input photon (the n = 1 case), this interfer-
ence was first demonstrated by Hong, Ou, and Mandel
(HOM). In their experiment, two photons entered a R =
1/2 beam splitter from different input ports [11]. If there is
no which-path information, the two paths leading to a
single photon in each output mode interfere completely
destructively. As a result the photons always emerge as
pairs and never as a single photon, leading to a drop in the
coincidence detection rate between the two output ports.
The depth of an interference dip is typically characterized
by the visibility: V = (P¢cp — Py)/Pcy», which is a stan-
dard measure of the contrast of the interference. For HOM
interference, the visibility can range from 0%, in the case
where there is no interference, to 100%, in the case where
there is perfect destructive interference. Inverting the ex-
pression for the visibility gives Py; = Py (1 — V), which
relates the conditional transmission probabilities character-
izing the quantum filter from the experimentally measured
visibilities. For a fixed number of input photons, n, we can

use the expressions for Py; and P, to obtain the expected
visibility, V. =[(R — 1)> + R?/n]"! — n.

Practical implementation of this quantum filter and scal-
able linear optics quantum gates [4,5] share the same
technological difficulties: widely available single-photon
counting detectors cannot distinguish between one photon
and two [12], down-conversion is a probabilistic instead of
deterministic emitter of photon pairs, and photon loss (or
detector inefficiency) introduces errors. All of these effects
have the undesirable characteristics of introducing photon
number uncertainty into the experiment. Nevertheless,
even with these constraints, it is still possible to compare
the behavior of the filter with interference to those cases
without when the number of input photons is certain. This
is accomplished through multiphoton coincidence detec-
tion which rejects those cases where the source did not
emit photons or photons were lost and not detected.
Developments in source and detector technology necessary
for optical quantum computation are also required for this
quantum filter to act on input states with uncertain photon
number.

The experimental setup is shown in Fig. 2. Frequency-
doubled pulses from a mode-locked Ti:sapphire laser
(394.5 nm central wavelength, 200 fs pulse duration, and
76 MHz repetition rate) pass twice through a type-II phase-
matched barium-borate (BBO) crystal. The crystal was cut
to produce polarization-entangled pairs via parametric
down-conversion [13], but the polarization entanglement
did not play a role here. The first polarizing beam splitter
[PBS, Fig. 2(c)] projects out product states for further
participation in the experiment. Recall that a PBS transmits
horizontally polarized light and reflects vertically polar-
ized light. In those cases where we used a single-photon
input state, we employed a single pair of down-conversion
photons [Fig. 2(a)]. When we used a two-photon input state
(the n = 2 case) in addition to the ancilla, we used two
independent down-conversion pairs [Fig. 2(b)]. A horizon-
tally polarized two-photon state was probabilistically cre-
ated from the forward down-conversion pair using a 50/50
fiber beam splitter. To investigate the full range of behavior
of the quantum filter in a single experimental setup, we
constructed a variable beam splitter (VBS) using two PBSs
and a half-wave plate (HWP). The angle between the HWP
fast axis and horizontal, 6, can be changed to give R =
sin’26 [5,14]. Photodetection is carried out by the single-
photon counting detectors D, D,, D3, and D,. Fourfold
detection probabilities are similar to those described in
Ref. [3]. In the n = 1 case, the twofold coincidence events
between detectors D, and D3 were measured. In the n = 2
case, we measured fourfold coincidences between detec-
tors D;—D, with detectors D5 and D, acting as a cascaded
two-photon detector.

For the experiment, we control the relative delay, and
hence the degree of distinguishability, between the ancilla
and one- or two-photon state into the VBS. This is ac-
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FIG. 2. Experimental setup for the demonstration of a quantum
filter. Input states containing one or two photons are produced
using parametric down-conversion in a type-II phase-matched 2-
mm BBO crystal pumped by ultraviolet laser pulses. Interference
filters (F) select light with a center wavelength of 789 nm and
bandwidth of 4 nm. (a) In the n = 1 case, the input photon and
ancilla photon originate from the same down-conversion pair.
Polarization controllers (Pol Control) compensate unwanted
polarization rotations in the optical fibers. (b) In the n =2
case, the two input photons came from one down-conversion
pair on the forward pass of the pump. These photons were
probabilistically combined into the same optical mode using a
fiber beam splitter. This produces a horizontally polarized two-
photon state. The vertically polarized ancilla is produced in a
second down-conversion pair on the backward pass of the pump
heralded by a detection event at D;. The one- or two-photon
states are contained in mode 1 and the ancilla photon in mode 2.
(c) The photons were combined in a variable-reflectivity beam
splitter constructed using two polarizing beam splitters (PBSs)
and a half-wave plate (HWP). Their relative times of arrival were
controlled by the delays on the fiber coupler and pump mirror. In
output mode 3, a click at detector D, is required for the quantum
filter to implement the desired transformation. In the n = 1 case,
the output photons were measured at detector D5, while in the
n = 2 case photon pairs were detected by the cascaded detector
pair D3 and Dy.

complished either by using the fiber coupler in mode 2 in
the n = 1 case, or by controlling the time delay of the
pump laser on its second pass through the BBO crystal in
the n = 2 case. The twofold or fourfold coincidences were

recorded as a function of these delays for different R
values. Raw data accumulated in the experiment are shown
in Figs. 3(a) and 3(b) where the solid lines are Gauss-
ian fits.

Figure 3(a) shows the twofold coincidence counts accu-
mulated in 10 s (n = 1 case). All cases measured in this
configuration show a drop in the coincidence rate near zero
relative delay. In this configuration, the maximum mea-
sured visibility of (83 % 1)% was obtained when R = 1/2.
Visibilities for other measured cases and the theoretical
prediction are summarized as the open data points and
curve in Fig. 3(c). Note that the visibility is expected to
drop to zero as R is raised or lowered to either extreme.
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FIG. 3. Experimental results for one- and two-photon input
states. (a) The twofold coincidences for the n = 1 configuration
[Fig. 2(a)] between detectors D, and D5 are shown as a function
of the relative delay introduced by the fiber coupler. Solid lines
show Gaussian fits to the data. All cases show a decrease in the
coincidence rate with a maximum measured visibility of (83 =
1)% for R = 1/2. (b) The fourfold coincidences as a function of
delay for the n = 2 source configuration [Fig. 2(b)] for the same
R values. In this case, the maximum visibility was measured to
be (78 £ 5)% at R = 2/3 not 1/2. The experimental data for
R = 1/6 show an increase in coincidence rate at zero delay.
(c) All experimentally measured visibilities are shown as a
function of the R for n = 1 (open circles, dotted line theory)
and n =2 (solid diamonds, solid line theory) input states.
(d) Conditional transmission probabilities inferred from the
experimental data are shown for both the n = 1 (open circles,
dotted line theory) and n = 2 (solid diamond, straight line
theory) cases for different R settings.
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This n = 1 behavior is well known [11] and is starkly
contrasted by that of the n = 2 case. Figure 3(b) shows
the fourfold coincidences accumulated in either 3 or 4 h
between the detectors D;—D, for the two-photon input
state and source configuration in Fig. 2(b). The maximum
measured visibility of (78 * 5)% no longer occurs when
R = 1/2 but rather R = 2/3. This shift in the maximum
visibility is explained by our theory, which predicts that the
visibility reaches a maximum of 100% at R = 2/3. The
experimental data measured for R = 1/6 show an in-
creased coincidence rate near zero delay with a visibility
of (=93 = 26)% where the sign change indicates construc-
tive rather than destructive interference. The change in sign
of the visibility is not a feature of original HOM non-
classical interference. However, this sign change is pre-
dicted by our theory and is expected for all n» = 2 when
R<(n—1)/(n+1).

The experimentally measured visibilities provide the
characteristics of the quantum filter. For very large delays,
we assume our classical mixture model adequately de-
scribes the outcome probabilities and we use the experi-
mentally measured visibilities to extract the conditional
transmission probability Py;. Figure 3(d) displays the
results for n = 1 (open circles, dotted line theory) and
n =2 (solid diamonds, straight line theory). We have
good agreement between experiment and theory here for
the characteristics of the filter. Discrepancies near the
minimum conditional transmission probability are due to
sensitivity to mode mismatch. Improvements in source
characteristics, specifically removing the distinguishing
information between independent down-conversion pairs
[15], and using waveguided optics are expected to signifi-
cantly improve the interference contrast [16]. Never-
theless, we clearly see that in the experiment there are R
values where the attenuation for the two-photon state is
larger than for the one-photon state and vice versa. For
example, when R was set to 1/3, the extracted conditional
transmission probability for the one-photon state was
(14.1 = 0.7)%, while for the two-photon state it was
(29.2 £4.9)%. In a passive linear-optical system, where
photons are absorbed in an uncorrelated way, a higher
photon number state cannot be attenuated less than a lower
photon number state. Thus our filter implements a
nonlinear-optical absorption process.

The absence of strong interactions and optical nonline-
arities is restrictive in quantum optics. Measurement-
induced optical nonlinearities, which were originally pro-
posed in the context of optical quantum computation [2],
offer such strong nonlinearities that individual photons can
effectively interact. We have implemented the fundamental
elements of a quantum filter for photon Fock states based
on a measurement-induced absorptive nonlinearity. Spe-
cifically, we have demonstrated the dramatically different
underlying nonclassical interference behavior for one- and

two-photon input states. This absorptive nonlinearity
promises to be a powerful additional tool for controlling
the properties of light a few photons at a time.
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