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Leptogenesis from Gravity Waves in Models of Inflation
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We present a new mechanism for creating the observed cosmic matter-antimatter asymmetry which
satisfies all three Sakharov conditions from one common thread, gravitational waves. We generate lepton
number through the gravitational anomaly in the lepton number current. The source term comes from
elliptically polarized gravity waves that are produced during inflation if the inflaton field contains a
CP-odd component. The amount of matter asymmetry generated in our model can be of realistic size for
the parameters within the range of some inflationary scenarios and grand unified theories.
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As far into the Universe as we can see, there is an excess
of matter over antimatter. The recent determinations of the
cosmological parameters from the cosmic microwave
background by the WMAP experiment gives the baryon
density of the universe as [1]

nb=n� � �6:5� 0:4� � 10�10: (1)

This is a small number, but at the same time it is large
enough to be a puzzle for models of particle physics. A
baryon excess this large cannot be produced in the early
universe within the standard model of particle physics [2].
In this Letter, we introduce a new mechanism for the
creation of the matter-antimatter asymmetry, one associ-
ated with gravitational fluctuations created during cosmo-
logical inflation.

The conditions for generating a matter-antimatter asym-
metry were stated by Sakharov almost 40 years ago [3].
First, baryon number should be violated. Second, CP
should be violated. Third, these symmetry violations
should be relevant at a time when the universe is out of
thermal equilibrium. Since the 1980’s, it has been realized
that the standard weak interactions contain processes, me-
diated by sphaelerons, which interconvert baryons and
leptons and are thermally activated at temperatures greater
than 1 TeV. Thus, we can also create the baryon asymmetry
by creating net lepton number at high temperature through
out-of-equilibrium and CP-asymmetric processes [4,5].
Scenarios of this type are known as leptogenesis.

The out-of-equilibrium conditions can be created at a
phase transition or through late decay of massive particles.
The most attractive choice for a phase transition is that
associated with electroweak symmetry breaking. However,
that phase transition is probably not sufficiently strongly
first order. This is known to be an obstacle to baryogenesis
in the standard model. Particle decay asymmetries are
loop suppressed and therefore require relatively large
CP-violating phases. Such large phases are strongly con-
strained in supersymmetry [6] though they still could
appear in the neutrino Yukawa couplings that are used in
the Fukugita-Yanagida scenario for leptogenesis [5]. In any
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event, there is good reason to seek more effective sources
of CP-violating out-of-equilibrium physics.

Our model of matter-antimatter asymmetry is assembled
out of the following ingredients. First, as is well-known [7],
the lepton number current, and also the total fermion
number current, has a gravitational anomaly in the standard
model. Explicitly,
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The anomaly requires an imbalance of left- and right-
handed leptons, so we are ignoring right-handed neutrinos.
In general (2), will be correct in an effective theory valid
below a scale �. A simple guess for � is that it is at the
right-handed neutrino scale, of the order of 1014 GeV, but
we would like to keep in mind the possibility of higher
values of �.

Next, we claim, a contribution to R ~R of definite sign can
be generated by gravitational fluctuations produced during
inflation if the inflaton field contains a CP-odd component.
This can be naturally achieved if the inflaton is a complex
modulus field such as one finds in supergravity or super-
string models. Such fields can have the very flat potentials
required for inflation. The imaginary part � of this field
(which we henceforth call an ‘‘axion’’) can couple to
gravity through an interaction

�L � F���R ~R; (4)

where F is odd in �, as a result of the Green-Schwarz
mechanism [8]. Lue, Wang, and Kamionkowski (LWK)
have studied the effects of such an interaction in generating
observable parity-violation in the cosmic microwave back-
ground [9]. A simple form for F��� is

F��� �N�=�16�2MPl�; (5)

where N is the number of stringy degrees of freedom
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propagating in the loops and the MPl in the denominator is
approximately the string scale. In principle, thisMPl can be
substituted with a lower mass scale F with the constraint
that our effective field theory is valid only for �<F .

We would like to apply the interaction (4) to the dynam-
ics of metric fluctuations during inflation. When the axion
field has a slowly rolling nonzero classical value, the
coupling (4) can lead to quantum fluctuations of the gravi-
tational field that, treated to second order, generate a non-
zero right-hand side for (2).

We believe that our analysis is also interesting because
the Sakharov conditions are satisfied in this scenario in an
unusual way. Lepton number is violated through (2). CP
violation and out of equilibrium result from the nonzero
classical value of the axion field. Before inflation, the
complex modulus field varies from point to point in both
modulus and phase. Inflation blows up a small region in
this field to a size much greater than that of the visible
universe. In this region, the modulus field is approximately
constant and has a randomly chosen, fixed phase. This
value then rolls slowly toward the minimum of its poten-
tial. In this process, we have out-of-equilibrium dynamics
and, if the phase is nonzero, a CP asymmetry. We claim
that no explicit CP violation is needed in the equations of
motion. The CP-odd field � could have zero expectation
value today and need have no relation to the CP violation
observed in particle physics.

Now we would like to quantitatively estimate the lepton
number produced in inflation [10]. The general form of
08130
metric perturbations about a Friedmann-Robertson-Walker
universe can be parametrized as

ds2 � ��1� 2’�dt2 � widtdx
i

� a2�t����1� 2 ��ij � hij�dx
idxj	 (6)

where ’,  , wi, and hij respectively parametrize the two
scalar, vector, and tensor fluctuations of the metric. It is
straightforward to show that the scalar and vector pertur-
bations do not contribute to R ~R, and so we ignore these
fluctuations in the following discussion. We can also fix a
gauge so that the tensor fluctuation is parametrized by the
two physical transverse traceless elements of hij. For grav-
ity waves moving in the z direction, we write

ds2 � �dt2 � a2�t���1� h��dx2 � �1� h��dy2

� 2h�dxdy� dz
2	 (7)

where a�t� � eHt during inflation and h�, h� are functions
of t, z. To see the CP violation more explicitly, it is
convenient to use a helicity basis

hL � �h� � ih��=
���
2
p
; hR � �h� � ih��=

���
2
p
: (8)

Here hL and hR are complex conjugate scalar fields. To be
very explicit, the negative frequency part of hL is the
conjugate of the positive frequency part of hR, and both
are built from wave functions for left-handed gravitons.

The contribution of tensor perturbations to R ~R, up to
second order in hL and hR, is
R ~R�
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If hL and hR have the same dispersion relation, this ex-
pression vanishes. Thus, for R ~R to be nonzero, we need a
‘‘cosmological birefringence’’ during inflation. Such an
effect is induced by the addition of (4) to the gravitational
equations [9].

Specifically, by adding (4) to the Einstein action, insert-
ing (7), and varying with respect to the metric fluctuations,
we find the equations of motion

�hL � �2i
�

a
_h0L; �hR � �2i

�

a
_h0R; (10)

where

� � 4�F00 _�2 � 2HF0 _��=M2
Pl; (11)

dots denote time derivatives, and primes denote differen-
tiation of F with respect to �. Note that (4) with a constant
� is a total divergence that cannot affect the equations of
motion; thus, all terms in � involve derivatives of �. We
have dropped terms with third-order derivatives of hL and
hR and terms with ��. In fact, it is also permissible to ignore
the F00 term in (11), since in slow-roll inflation, _�
 MPlH
and each derivative on F brings a dimensionful factor of
order 1=MPl [11]. These equations should be compared to
those for evolution in flat space given by LWK [9]. The
new term proportional to H _� leads to a substantial en-
hancement in the size of �. With this simplification, and
the approximate form (5),

� �
������
2�
p

N �H=MPl�
2=2�2; (12)

where � � 1
2 �

_��2=�HMPl�
2 is the slow-roll parameter of

inflation [10].
Let us now focus on the evolution of hL and, more

specifically, on its positive frequency component. It is
convenient to introduce conformal time

� � 1=Ha � e�Ht=H: (13)

(Note that conformal time � runs in the opposite direction
from t.) The evolution equation for hL becomes

d2

d�2
hL � 2

1

�
d
d�

hL �
d2

dz2 hL � �2i�
d2

d�dz
hL: (14)

If we ignore � for the moment and let hL � eikz, this
becomes the equation of a spherical Bessel function:

d2

d�2
hL � 2

1

�
d
d�

hL � k
2hL � 0 (15)
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for which the positive frequency solution is

h�L �k; �� � e�ik���z��1� ik��: (16)

We now look for solutions to (14) with hL � eikz. To do
this, let

hL � eikz��ik��ek��g���: (17)

Then g��� satisfies the equation

d2

d�2
g�

�
k2�1��2� �

2

�2 �
2k�

�

�
g � 0: (18)

This is the equation of a Schrödinger particle with ‘ � 1 in
a weak Coulomb potential. For hL, the Coulomb term is
repulsive; for hR, with the opposite sign of the � term, the
Coulomb potential is attractive. This leads to attentuation
of hL and amplification of hR in the early universe. This is
just the cosmological birefringence described by LWK [9].

It will turn out that the generation of the matter asym-
metry is dominated by modes at short distances (subhor-
izon modes) and at early times. This corresponds to the
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limit k�� 1. In this region, we can ignore the potential
terms in (18) and take the solution to be approximately a
plane wave. More explicitly,

g��� � exp�ik�1��2�1=2��1� �����	; (19)

where ���� � log�=�.
We would like to apply the results of (17) to compute the

expectation value of R ~R in the inflationary space-time. Our
expression will be dominated by the quantum part of the
gravity-wave evolution. For this regime, we can calculate
the expectation value by contracting hL and hR in R ~R using
an appropriate Green’s function. Define

G�x; t; x0; t0� � hhL�x; t�hR�x
0; t0�i

�
Z d3k

�2��3
eik�x�x

0�Gk��;�
0�: (20)

For k parallel to z, the Fourier component Gk satisfies (14)
with a delta-function source
�
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For � � 0, the solution of this equation is
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(22)

where h�L is the complex conjugate of (16), and h�R , h�R are
the corresponding solutions of the hR equation. For � � 0,
these solutions are the same as for hL, but the structure of
(22) will be preserved when we go to the case � � 0. The
leading effect of � is to introduce the exponential depen-
dence from (17),

Gk � e�k��Gk0e
�k��0 (23)

for both �> �0 and �< �0. The prefactor is modified in
order �2, and the wave functions acquire additional cor-
rections that are subleading for k�� 1. Neither of these
effects will be important for our result.

The Green’s function (23) can now be used to contract
hL and hR to evaluate the quantum expectation value of
R ~R. The result is

hR ~Ri �
16

a

Z d3k

�2��3
H2

2k3M2
Pl

�k��2k4��O��3� (24)

where we pick up only the leading behavior for k�� 1.
We note again that our expression for hR ~Ri is nonzero

because of the effect of inflation in producing a CP asym-
metry out of equilibrium. The original quantum state for
the inflaton might have had nonzero amplitude for a range
of values of � and might even have been CP invariant.
However, inflation collapses the wave function onto a
particular value of � that is caught up in the local expan-
sion of the universe. This value gives us a classical back-
ground that is CP asymmetric.

The above result and computations seem to be crucially
depending on the form of the Green’s function or the
vacuum state we have used. To resolve the possible ambi-
guity in this regard, one may perform the above computa-
tion using a different method, the fermion level crossing,
e.g., following [12]. This computation confirms the above
results [13].

Inserting (24) into (2) and integrating over the time
period of inflation, we find for the net lepton number
density

n �
Z H�1

0
d�

Z d3k

�2��3
1

16�2

8H2k3�2�

M2
Pl

: (25)

The integral over k runs over all of momentum space, up to
the scale � at which our effective Lagrangian description
breaks down. The dominant effect comes not from the
usual modes outside the horizon at the end of inflation
(superhorizon modes), k=H < 1, but rather from very short
distances compared to these scales. The integral over � is
dominated at large values of �, early times. The integral
represents a compromise between two effects of inflation,
first, to blow up distances and thus carry us to smaller
physical momenta and, second, to dilute the generated
lepton number through expansion. It is now clear that the
dominant contribution to the right-hand side comes from
k�� 1, as we had anticipated. Performing the integrals,
we find

n �
1

72�4

�
H
MPl

�
2
�H3

�
�
H
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: (26)
1-3



PRL 96, 081301 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
3 MARCH 2006
We might interpret this result physically in the following
way. The factor �H=MPl�

2 is the usual magnitude of the
gravity-wave power spectrum. The factor � gives the
magnitude of effective CP violation. The factor H3 is the
inverse horizon size at inflation; this gives the density n
appropriate units. Finally, the factor ��=H�6 gives the
enhancement over one’s first guess due to our use of
strongly quantum, short distance fluctuations to generate
R ~R, rather than the superhorizon modes which effectively
behave classically.

To understand the significance of this estimate, we
should compare it to the entropy density of the universe
just after reheating, assuming that the energy of the infla-
tionary phase has been converted to the heat of a gas of
massless particles. To estimate this, assume very naively
that reheating is instantaneous. Then reheating converts an
energy density 	 � 3H2M2

Pl to radiation with 	 �
�2g
T

4=30 and s � 2�2g
T
3=45, where g
 is the effective

number of massless degrees of freedom. This gives s �
2:3g1=4�HMPl�

3=2. With this value [14],

n=s � 6� 10�5g�1=4�H=MPl�
7=2���=H�6: (27)

Assuming that there have been no large increases in the
entropy of the universe since the end of reheating, (27) can
be compared directly to the present value of n=s inferred
from (1). For this one should note that the ratio of the
present baryon number to the lepton number originally
generated in leptogenesis is approximately nB=n � 4=11
[4]; then (1) implies n=s � 2:4� 10�10.

Inserting the estimate for � given in (12) and setting
g
 � 100, we find

n=s� 1� 10�6
���
�
p

N �H=MPl�
11=2��=H�6: (28)

In principle, N can be a large dimensionless number,
within string theory typically N * 100. The ratio
(H=MPl) is limited in simple slow-roll inflation from the
relation �	=	� �H=MPl�=

���
�
p
� 10�5. The WMAP re-

sults give a more precise version of this bound for the
case of single-field inflation: H=MPl < 1� 10�4 [15], im-
plying that �� 10�2 and hence

n=s� 1� 10�5�H=MPl�
�1=2��=MPl�

6: (29)

Note that in (29), we assumed that the mass scale from
the kinetic term for the modulus is the Planck or string
scale. If this mass scale is set at a lower mass F , � can be
larger, scaling as

��
������
2�
p

N �H2=MPlF �=2�2��H=MPl�
2�MPl=F �: (30)

Assuming that F �� we obtain

n
s
� 1� 10�5

�
H
MPl

�
�1=2

�
�
MPl

�
5
: (31)

Equation (31) is our final result in which n=s / H�1=2,
corresponding to n / H1. As the first estimate, put ��
H � 2� 1014 GeV; this yields n=s� 10�27, a very small
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and unsatisfactory result. Noting (31), this estimate can be
improved by taking higher values of� and/or lower values
of H. On the other hand, we need sphaelerons to be active
after inflation. This happens for reheat temperature Tr *

1 TeV, or H * 10�3 eV. The acceptable range for H is
then 10�30 & H=MPl < 10�4. To recover the observed
value of n=s, 3� 1014 <� & 1017 GeV. The conven-
tional scale of supersymmetric grand unification scale is
within this range.

In summary, we have presented a new mechanism for
leptogenesis, which relies on the axial vector anomaly to
violate fermion number, the initial state of inflation for CP
violation and out-of-equilibrium dynamics. These are very
minimal ingredients that might be found in a wide variety
of models of physics at short distances. It is interesting to
ask whether the conditions we have found can be em-
bedded in a grand unification model in a natural way.
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