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Einstein–de Haas Effect in Dipolar Bose-Einstein Condensates
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The general properties of the order parameter for a dipolar spinor Bose-Einstein condensate are
discussed based on symmetries of interactions. An initially spin-polarized dipolar condensate is shown to
dynamically generate a nonsingular vortex via spin-orbit interactions—a phenomenon reminiscent of the
Einstein–de Haas effect in ferromagnets.
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The realization of a Bose-Einstein condensate (BEC) of
52Cr [1,2] marks a major development in degenerate quan-
tum gases in that the interparticle interaction via magnetic
dipoles in this BEC is much larger than those in other
spinor BECs of alkali atoms. The long-range nature and
anisotropy of the dipolar interaction poses challenging
questions concerning the stability and superfluidity of the
BEC [3–10]. The ground state of the 52Cr atom has a total
electronic spin of three and a nuclear spin of zero, and
therefore the 52Cr BEC has seven internal degrees of free-
dom. The interplay between dipolar and spinor interactions
makes the order parameter of this system highly nontrivial
[11–13]. Moreover, the dipole interaction couples the spin
and orbital angular momenta so that an initial magnetiza-
tion of the system causes the gas to rotate mechanically
(Einstein–de Haas effect [14]) or, conversely, solid-body
rotation of the system leads to its magnetization (Barnett
effect [15]).

This Letter investigates the Einstein–de Haas and
Barnett effects in a spin-3 BEC system. We discuss the
symmetry of the order parameter of a dipolar spinor BEC
and study the dynamic formation of spin textures using
numerical simulations of the seven-component nonlocal
mean-field theory, which takes into account short-range
(van der Waals) interactions and magnetic dipole-dipole
interactions subject to a trapping potential and an external
magnetic field.

We first consider the general properties of the order
parameter by discussing two fundamental symmetries of
the dipolar interaction between the magnetic dipole mo-
ments �1 � g�Bŝ1 and �2 � g�Bŝ2, where g is the elec-
tron g factor, �B is the Bohr magneton, and ŝ1 and ŝ2 are
the spin operators. The interaction between the magnetic
dipoles located at r1 and r2 is described by

v̂ dd�r12��cdd
�ŝ1 � ŝ2��3�ŝ1 �e12��ŝ2 �e12�

r3
12

; (1)

where r12 � r1 � r2 , e12� r12=r12, and cdd �
�0�g�B�

2=4�, with �0 being the magnetic permeability
of the vacuum. The dipole interaction is invariant under
simultaneous rotation in spin and coordinate spaces about
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an arbitrary axis, say the z axis, so that the projected total
angular momentum operator Ŝz � L̂z on that axis com-
mutes with v̂dd, where Ŝ � ŝ1 � ŝ2 is the total spin opera-
tor and L̂ is the relative orbital angular momen-
tum operator. Another symmetry of the dipolar interac-
tion is the invariance under the transformation Pze�i�Ŝz ,
where Pz: �x; y; z� ! �x; y;�z� and e�i�Ŝz : �Ŝx; Ŝy; Ŝz� !
��Ŝx;�Ŝy; Ŝz�. Thus, the eigenvalues of the following
operators are conserved by the dipole interaction:

Ŝ z � L̂z and Pze�i�Ŝz : (2)

A crucial observation is that these operators also commute
with the short-range interactions. Thus, if the confining
potential is axisymmetric, the simultaneous eigenfunctions
of the two operators (2) can serve to classify the two-body
wave function.

Constructing a many-body wave function by directly
applying these symmetry considerations is quite compli-
cated since the system has many degrees of freedom.
However, substantial simplification can be achieved by
considering the case of a ferromagnet in which dipole
moments are localized at lattice sites and thus the degrees
of freedom of the system are reduced to the center-of-mass
motion and the solid-body rotation around it. Con-
sequently, spin relaxation of the system leads to a solid-
body rotation of the ferromagnet—the Einstein–de Haas
effect [14]. An analogous consideration can be applied to a
BEC because almost all atoms occupy a single-particle
state and therefore the degrees of freedom of the system
can be represented by those of the order parameter. We
may thus expect the Einstein–de Haas effect to emerge in a
dipolar spinor BEC system.

In general, the order parameter of a BEC can be defined
as the eigenfunction corresponding to the macroscopic
eigenvalue of the reduced single-particle density operator.
Let the order parameter be denoted as  ��r� with a norm
assumed to be N, the number of condensate atoms. Here, �
represents the magnetic sublevels of the atoms. It follows
from the above symmetry considerations of the dipolar
interaction that the order parameter of a dipolar spinor
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BEC in an axisymmetric system can be classified by the
eigenvalues of the operators ŝz � l̂z and Pz exp��i�ŝz�
corresponding to the operators (2), where ŝz is the z com-
ponent of the spin matrix and l̂z � �i�@=@��. The simul-
taneous eigenstate of ŝz � l̂z and Pz exp��i�ŝz� with
eigenvalues J and p, respectively, is given by

 ��r;�; z; t� � ei�J������Jp�r; z; t�; (3)

where J is an integer and ��Jp is a complex eigenfunction
of Pz satisfying Pz��Jp � p��1����Jp with p � �1. A
key point of Eq. (3) is that it includes the spin-dependent
phase factor, since the dipolar interaction couples the spin
with the orbital angular momentum.

We now consider the dynamic formation of spin textures
in a dipolar BEC. The order parameter obeys the following
set of the nonlocal Gross-Pitaevskii equations:

i@
d ��r�
dt

�

�
�
@

2r2

2M
�g�BBext��Utrap�r�

�
 ��r�

�
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��0�0

X2s
S�0

gSh��jP Sj�0�0i 	��r� �0 �r� �0 �r�
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X
�

B�eff�r��g�Bs
�
��� ��r�; (4)

where M is the atomic mass, Bext is the external magnetic
field in the z direction, and Utrap�r� is the trapping poten-
tial. We assume an optical trap so that all spin components
experience the same trapping potential. The second line in
Eq. (4) represents the short-range interaction, where the
strength of the interaction is characterized by the s-wave
scattering length aS for a total spin S of a pair of atoms with
spin s as gS � 4�@2aS=M. The operator P S projects the
wave function into the Hilbert space with a total spin S and
is represented in terms of the Clebsch-Gordan coefficients
hs�s�jSMSi as h��jP Sj�

0�0i �
PS
MS��S

hs�s�jSMSi


hSMSjs�0s�0i [16].
The last line in Eq. (4) represents the dipole-dipole

interaction, where sx;y;z are the spin matrices, and

B�eff�r� �
cdd

g�B

X
�

Z
dr0

���� 3e�e�

jr� r0j3
X
�0�0

 	�0 �r
0�s��0�0 �0 �r

0�

(5)

is the effective magnetic field at r produced by the sur-
rounding magnetic dipoles, with e � �r� r0�=jr� r0j.
Calculating the time derivative of S��r� �P
�� 

	
��r�s

�
�� ��r�, we find that, apart from the spinor

interactions, S�r� behaves like a classical spin and under-
goes Larmor precession around the effective local mag-
netic field Beff�r� � Bextẑ. Hence, spin flip occurs in the
region where Bx;yeff �r� � 0. In a homogeneous infinite sys-
tem, the effective field is completely canceled in a polar-
ized BEC and spin flip does not occur. Therefore, the
08040
Einstein–de Haas effect in an initially fully spin-polarized
BEC is unique to nonuniform systems.

We now examine the spin dynamics of the Einstein–
de Haas effect in a spin-3 52Cr BEC system. We consider a
stable spin-polarized BEC in the lowest magnetic sublevel
� � �3, produced in a strong magnetic field, as in the
experiments of Refs. [1,2]. We then suddenly decrease the
magnetic field to Bext. The initial state can be calculated by
the imaginary-time propagation method in the subspace of
 �3�r�. We have performed three-dimensional simulations
of Eq. (4) with seven spin components by using the Crank-
Nicolson method. The scattering lengths of 52Cr are re-
ported to be a6 � 112, a4 � 58, and a2 � �7 in units of
the Bohr radius [17]. The value of a0 is unknown and we
estimate it using the van der Waals coefficient C6 given in
Ref. [17], obtaining a0 � �C6M=me�

1=4 � 91, where me is
the electron mass. Since we are interested in the spin
dynamics from a fully spin-polarized state, the short-range
interaction is dominated by a6 and a4 [18].

We assume N � 105 atoms trapped in an axisymmetric
potential Utrap�r� � �1=2�M!2�r2 � z2=	4� with ! �
2�
 820 Hz. The typical ratio of the dipolar interaction
to the short-range interaction is s2cdd=g6 ’ 0:03 with s �
3. In a spherical trap, the number density at the trap center
is n ’ 7
 1020 m�3 and the dipole-dipole interaction en-
ergy s2cddn becomes of the same order of magnitude as the
Zeeman energy for Bext ’ 0:1 mG. Hence, the spin-flip
rate becomes significant for jBextj & 1 mG. In the follow-
ing, we first consider Bext � 0 and 	 � 1, and then discuss
the effects of the external magnetic field and the trap
geometry on the spin dynamics.

Figure 1 shows the results for Bext � 0 and 	 � 1. In
Fig. 1(a), we plot the population of each spin state
N�=N �

R
drj �j2=N as a function of !t. The figure

shows that N�2=N first increases rapidly and then the
components with � � �1 begin to increase. Figs. 1(b)–
1(d) show three-dimensional plots of  �3,  �2, and  �1,
respectively, at !t � 2, where j �j2 is scaled by N=a3

ho

with aho being the harmonic oscillator length
�����������������
@=2M!

p
.

The order parameters show the symmetries of Eq. (3):  �2

has a phase factor e�i� and a node plane at z � 0, and  �1

has a phase factor e�2i� and has reflection symmetry with
respect to the z � 0 plane. The other spin components have
double-ring shapes similar to that of Fig. 1(d) and their
phase relationships satisfy Eq. (3) with J � �3 and p �
�1. Beyond !t � 5, the spinor order parameter of the
system develops a complicated structure.

The effective magnetic field, Eq. (5), at !t � 0 and the
spin vector S�r� at !t � 2 are plotted in Fig. 2. The
whirling patterns of the spin texture in Figs. 2(b) and
2(c) are due to Larmor precession around the local mag-
netic field, shown in Fig. 2(a). Since the local magnetic
field points outward for z > 0 and inward for z < 0, the
directions of the whirlpools in Figs. 2(b) and 2(c) are
opposite. Topological spin textures in spinor BECs have
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FIG. 2 (color). (a) Dipole field at t � 0 for 	 � 1. The solid
line shows the isopycnic curve at j �3j

2a3
ho=N � 0:0001. The

color of the arrows denotes the magnitude of the field. (b),(c)
Spin configurations on the (b) z � 2 �m plane and
(c) z � �2 �m plane at !t � 2 for Bext � 0 and 	 � 0. The
length of the arrows represents the magnitude of the spin vector
projected on the xy plane and the color shows jSja3

ho=N. Note
that the spins tilt in a direction perpendicular to Beff�r�.

FIG. 3 (color). (a) Population of � � �2 sublevel versus !t
for Bext � �1 mG and 	 � 1 and 0.5. (b),(c) Cross sections of
j �2j

2a3
ho=N with 	 � 1 at !t � 8 for (b) Bext � 1 mG and

(c) Bext � �1 mG. The cross sections are at z � 0:7 �m (left)
and y � 0 �m (right). The size of each panel is 8:2
 8:2 �m.

FIG. 1 (color). (a) Relative population N�=N �
R
drj �j

2=N
of each magnetic sublevel � versus !t for Bext � 0 and 	 � 1.
(b)–(d) Isopycnic surfaces of (b)  �3, (c)  �2, and (d)  �1 at
!t � 2, where j �j2a3

ho=N � 0:0001 for (b) and (c) and 5

10�5 for (d). The color on the surfaces represents the phase of
the order parameter (refer to scale at right).
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been observed in a spin-1=2 system [19] and in a spin-1
system [20]. We note that the spin textures in Figs. 2(b) and
2(c) are generated spontaneously due to the intrinsic dipole
interaction, in contrast to those in Refs. [19,20], which are
generated by external forces.

When the external magnetic field Bext is applied in the
positive z direction and is much stronger than the dipole
field, the spin angular momentum should be conserved
because of energy conservation and spin flipping is sup-
pressed. When Bext < 0, spin flip can occur by converting
Zeeman energy to kinetic energy. These behaviors are
demonstrated in Fig. 3(a), which shows the time evolution
of N�2=N for Bext � �1 mG. Figs. 3(b) and 3(c) show
cross sections of j �2j

2a3
ho=N for Bext � �1 mG at !t �

8 and 	 � 1. When Bext > 0,  �2 oscillates in time be-
tween the structures of Fig. 1(c) and Fig. 3(b). These
structures derive from the symmetry of the dipole interac-
tion, which can be expressed in terms of rank-2 spherical
harmonics Y2m. The dipole field produced by an approxi-
mately spherical distribution of  �3 � Y00�r� induces a
Y2�1�r� term in  �2 [Fig. 1(c)], which in turn affects itself
and induces a linear combination of Y2�1�r� and Y4�1�r�,
resulting in Fig. 3(b). Therefore, the structure in Fig. 3(b)
manifests as a secondary effect of the dipole-dipole inter-
action. In the case of Bext � �1 mG, a similar structure as
in Fig. 3(b) appears for !t & 4. However, as time advan-
ces, the domain structure develops as shown in Fig. 3(c).
The domain size becomes smaller as jBextj increases.
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Finally, we discuss the geometry dependence of the
dynamics. Figure 4 shows the dipole field Beff�r� at t �
0 for 	 � 0:5. Compared with Fig. 2(a), the z component
of the effective magnetic field is inverted around the center
5-3



FIG. 4 (color). Dipole field at t � 0 for 	 � 0:5. The solid line
shows the isopycnic curve at j �3j

2a3
ho=N � 0:0005. Note that

the sign of Bzeff�r� in the condensate is opposite to that in
Fig. 2(a).
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of the condensate. The transfer of atoms from the spin
component � � �3 to � � �2 is due to the Larmor
precession caused by Bxyeff , and it occurs most efficiently
at the place where the local magnetic field in the z direction
Bzeff � Bext vanishes. The sign of such an optimized Bext for
spherical traps is opposite to that for pancake-shaped traps,
as can be inferred from Figs. 2(a) and 4. This fact is
reflected in Fig. 3(a) as the difference in the field depen-
dence of the initial peaks. Since the z component of the
dipole field is positive for most of the condensate when
	 � 1 [Fig. 2(a)], the initial peak in Fig. 3(a) is larger for
Bext � �1 mG than for Bext � 1 mG. The relation be-
tween the initial peak and Bext is opposite for 	 � 0:5,
since the z component of the dipole field is mostly negative
in the condensate (Fig. 4). In the case of a cigar-shaped
BEC, the qualitative behavior is the same as for the spheri-
cal trap.

In conclusion, we have shown that the Einstein–de Haas
effect occurs in dipolar spinor Bose-Einstein condensates
and that a nonsingular vortex appears from an initially
spin-polarized condensate. In a low magnetic field
(�1 mG) the fraction of the spin-flipped atoms (�5%) is
large enough to be observed in Stern-Gerlach experiments.
The spin-relaxation processes produce various vortex
structures, depending on the external magnetic field.
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Note added.—Very recently, a preprint [21] has ap-
peared which also discusses the Einstein–de Haas effect
in a dipolar BEC.
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