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Bosonization, Pairing, and Superconductivity of the Fermionic Tonks-Girardeau Gas
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We determine some exact static and time-dependent properties of the fermionic Tonks-Girardeau (FTG)
gas, a spin-aligned one-dimensional Fermi gas with infinitely strongly attractive zero-range odd-wave
interactions. We show that its two-particle reduced density matrix exhibits superconductive off-diagonal
long-range order, and on a ring an FTG gas with an even number of atoms has a highly degenerate ground
state with quantization of Coriolis rotational flux and high sensitivity to rotation and to external fields and
accelerations. For a gas initially under harmonic confinement, we show that during an expansion the
momentum distribution undergoes a ‘‘dynamical bosonization,’’ approaching that of an ideal Bose gas
without violating the Pauli exclusion principle.
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If an ultracold atomic vapor is confined in a de Broglie
waveguide with transverse trapping so tight and tempera-
ture so low that the transverse vibrational excitation quan-
tum @! is larger than available longitudinal zero point and
thermal energies, the effective dynamics becomes one-
dimensional (1D) [1,2], a regime currently under intense
experimental investigation [3,4]. Confinement-induced 1D
Feshbach resonances (CIRs) reachable by tuning the 1D
coupling constant via 3D Feshbach scattering resonances
occur for both Bose gases [1] and spin-aligned Fermi gases
[5]. Near a CIR, the 1D interaction is very strong, leading
to strong short-range correlations, breakdown of effective-
field theories, and emergence of highly correlated N-body
ground states. In the bosonic case with very strong repul-
sion [1D hard-core Bose gas with coupling constant gB1D !
�1, the Tonks-Girardeau (TG) gas], the exact N-body
ground state was determined some 45 years ago by a
Fermi-Bose (FB) mapping to an ideal Fermi gas [6], lead-
ing to ‘‘fermionization’’ of many properties of this Bose
system, as recently confirmed experimentally [4]. The
‘‘fermionic TG’’ (FTG) gas [7], a spin-aligned Fermi gas
with very strong attractive 1D odd-wave interactions, can
be realized by 3D Feshbach resonance mediated tuning to
the attractive side of the CIR with 1D coupling constant
gF1D ! �1. It has been pointed out [5,7] that the general-
ized FB mapping [5,7,8] can be exploited in the opposite
direction to map this system to the trapped ideal Bose gas,
leading to determination of the exact N-body ground state
and ‘‘bosonization’’ of many properties of this Fermi sys-
tem. We recently examined the equilibrium one-body den-
sity matrix and exact dynamics following sudden turnoff of
the interactions by detuning from the CIR [9]. Here we
determine some other exact properties of the untrapped,
ring-trapped, and harmonically trapped fermionic TG gas,
the most striking of which are pairing, superconductive off-
diagonal long-range order (ODLRO) of the two-body den-
sity matrix, a highly degenerate ground state of an even
number of atoms on a ring with quantization of Coriolis
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rotational flux and high sensitivity to rotation and to exter-
nal fields and accelerations, and a ‘‘dynamical bosoniza-
tion’’ of the momentum distribution following sudden
relaxation of the trap frequency.

Untrapped FTG gas.—The Hamiltonian is Ĥ�PN
j�1���@

2=2m��@2=@x2
j ���

P
1�j<‘�Nv

F
int�xj�x‘�, where

vFint is the two-body interaction. Since the spatial wave
function is antisymmetric due to spin polarization, there
is no s-wave interaction, but it has been shown [5,7] that a
strong, attractive, short-range odd-wave interaction (1D
analog of 3D p-wave interactions) occurs near the CIR.
This can be modeled by a narrow and deep square well of
depth V0 and width 2x0. The contact condition at the edges
of the well is [7]  F�xj‘ � x0� � � F�xj‘ � �x0� �

�aF1D 
0
F�xj‘ � 	x0�, where aF1D is the 1D scattering

length and the prime denotes differentiation. Consider first
the relative wave function  F�x� in the case N � 2. The
FTG limit is aF1D !�1, a zero-energy scattering reso-
nance. The exterior solution is  F�x� � sgn�x� � 	1 (�1
for x > 0 and�1 for x < 0), and the interior solution fitting

smoothly onto this is sin��x�, with � �
�����������������
mV0=@2

p
�

�=2x0. In the zero-range limit x0 ! 0� , the well area
2x0V0 � ��@�

2=2mx0 ! 1, stronger than a negative delta
function. In this limit, the wave function is discontinuous at
contact x0 � 0	 , allowing an infinitely strong zero-range
interaction in spite of the antisymmetry of  F [8]. This
generalizes immediately to arbitrary N: The exact FTG gas
ground state is

 F�x1; . . . ; xN� � A�x1; . . . ; xN�
YN

j�1

�0�xj�; (1)

with A�x1; . . . ; xN� �
Q

1�j<‘�Nsgn�x‘ � xj� the ‘‘unit
antisymmetric function’’ employed in the original discov-
ery of fermionization [6] and �0 � 1=

����
L
p

the ideal Bose
gas ground orbital, L being the periodicity length. Its
energy is zero [10] and it satisfies periodic boundary con-
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ditions for odd N and antiperiodic boundary conditions for
even N [11].

The exact single-particle density matrix �1�x; x0� �
N
R
 F�x; x2; . . . ; xN� 
F�x

0; x2; . . . ; xN�dx2; . . . ; dxN is
[9,12] �1�x; x

0� � N�0�x��


0�x
0��F�x; x0��N�1, with

F�x; x0� �
RL=2
�L=2 sgn�x � y�sgn�x0 � y�j�0�y�j

2dy � 1�

2jx � x0j=L. In the thermodynamic limit N ! 1, L! 1,
N=L � n, this gives an exponential decay [12]: �1�x; x0� �
ne�2njx�x0j. Its Fourier transform nk, normalized toP
knk � N (allowed momenta �2�=L, with � �

0;	1;	2; . . . ), is the momentum distribution function
nk � �1� �k=2n�2��1. It satisfies the exclusion principle
limitation nk � 1, but nevertheless, for n! 0 the continu-
ous momentum density n�k� � �L=2��nk reduces to N
times a representation of the Dirac delta function, simulat-
ing the ideal Bose gas distribution: n�k�!n!0N��k� [12].

The two-particle density matrix �2�x1; x2; x01; x
0
2� �

N�N � 1�
R
 F�x1; . . . ; xN� 
F�x

0
1; x

0
2; x3; . . . ; xN� �

dx3; . . . ; dxN also has a simple closed form:

�2�x1; x2; x01; x
0
2� � N�N � 1�sgn�x1

� x2��0�x1��0�x2�sgn�x01

� x02��


0�x
0
1��



0�x
0
2�

� �G�x1; x2; x01; x
0
2��

N�2; (2)

where �G�x1; x2; x01; x
0
2��

N�2 � �
RL=2
�L=2 sgn�x1 � x� �

sgn�x2 � x�sgn�x01 � x�sgn�x02 � x�j�0j
2�x�dx�N�2 �

e2n�y1�y2�y3�y4� in the thermodynamic limit, and y1 �
y2 � y3 � y4 are the arguments �x1; x2; x01; x

0
2� in as-

cending order. �2 is of order n2 in the following
cases: (a) jx1 � x01j � O�1=n�, jx2 � x02j � O�1=n�;
(b) jx1 � x02j � O�1=n�, jx2 � x01j � O�1=n�;
(c) jx1 � x2j � O�1=n�, jx01 � x

0
2j � O�1=n�. These are

just Yang’s criteria [13] for superconductive ODLRO of
�2 in the absence of ODLRO of �1. In case (c), �2 remains
of order n2 for arbitrarily large separation of the centers of
mass X � �x1 � x2�=2 and X0 � �x01 � x

0
2�=2, the hallmark

of ODLRO. On the other hand, in cases (a) and (b), �2

decays exponentially with jX� X0j. In the thermodynamic
limit, only configurations (c) contribute to the largest ei-
genvalue of �2, and �2 separates apart from negligible
contributions (a) and (b) [14]:

�2�x1; x2;x01; x
0
2� � n

2 sgn�x1� x2�e
�2njx1�x2jsgn�x01� x

0
2�

� e�2njx01�x
0
2j � terms negligible for�1:

(3)

By Yang’s argument [13], the largest eigenvalue �1 is of
order N, and this is confirmed by comparison with the �1

contribution �1u1�x1; x2�u1�x01; x
0
2� to the spectral represen-

tation of �2, implying that the corresponding eigenfunction
is u1�x1; x2� � C sgn�x1 � x2�e�2njx1�x2j, with [15] C �������������

2n=L
p

, implying �1 � n2=C2 � N=2. The range 1=2n of
u1 is in the region of onset of a Bose-Einstein condensation
08040
(BEC)-BCS crossover between tightly bound bosons and
loosely bound Cooper pairs. There is an upper bound [13]
�1 � N on the largest eigenvalue, so the FTG gas is highly
superconductive in the sense of Yang’s ODLRO criterion.

FTG gas on a ring.—If the FTG gas is trapped on a
circular loop of radius R, with particle coordinates xj
measured around the circumference L � 2�R, the FTG
gas must satisfy periodic boundary conditions for both odd
and even N because of the single-valuedness of its wave
function. Since the mapping function A�x1; . . . ; xN� �Q

1�j<‘�Nsgn�x‘ � xj� is periodic (antiperiodic) for odd
(even) N as a result of its definition, it follows that the
mapped ideal Bose gas used to solve the FTG problem
must satisfy periodic (antiperiodic) boundary conditions
for odd (even)N. The ground state of a FTG gas on a ring is
then different depending on the particle number parity. For
odd N, the FTG ground state in Eq. (1) is built from the
zero-momentum orbital �0 � 1=

����
L
p

and corresponds to
mapping the FTG gas onto the ideal Bose gas ground state,
the usual complete BEC, and is nondegenerate. On the
other hand, for even N, which we henceforth assume,
antiperiodicity requires that the only plane-wave orbitals
allowed are eikxj=

����
L
p

, with k � 	�=L;	3�=L; . . . . The
ground state of this fictitious ideal Bose gas, and hence that
of the mapped FTG gas, is then (N � 1)-fold degenerate,
with energy eigenvalue N�@2=2m���=L�2. These degener-
ate ground states are fragmented BECs, with wN atoms in
the orbital ei�xj=L and �1� w�N in e�i�xj=L with 0 � w �
1, and are conveniently labeled by a quantum number ‘z �
�w� 1

2�N � 0;	1;	2; . . . ;	 N
2 related to the eigenvalue

P of the circumferential linear momentum and that Lz of
the angular momentum z component by P � ‘z@=R and
Lz � ‘z@. The angular momentum per particle is half-
integral due to antiperiodicity of the orbitals, and the
degenerate ground states are in 1–1 correspondence with
the eigenstates of the spin angular momentum z component
of N spin-1=2 fermions.

The ground state degeneracy makes the FTG gas on a
ring a good candidate for detecting small external fields
and linear accelerations. Suppose that there is a potential
gradient parallel to a diameter of the ring or an acceleration
leading to a gradient in the inertial potential arising from
Einstein’s principle of equivalence, with the circumferen-
tial minimum of this potential occurring at a point x0. Then
the degeneracy is lifted, and, to lowest order in degenerate
perturbation theory, all N atoms occupy the orbital
�0�x� �

���������
2=L

p
cos���x� x0�=L�, leading to an observable

asymmetric density profile n�x� � 2ncos2���x� x0�=L�.
Because of its quantum coherence, the FTG gas is also a

good candidate for a sensitive rotation detector. Suppose
that the ring trap is rotating with angular velocity ~!
perpendicular to the plane of the ring. In the rotating
coordinate system, each atom sees an effective Coriolis
force ~FCor � 2m ~v� ~!. Comparing this with the usual
magnetic force ~Fmag � �e=c� ~v� ~B, one sees that the ki-
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netic energy operators in the Hamiltonian in the rotating
system are �p̂j � �h=L���=�0��

2=2m, where p̂j �
�@=i�@=@xj, � � �R2! is the Coriolis flux through the
loop, and �0 � h=2m is the Coriolis flux quantum. The
energy of each state j‘zi then becomes E � E0�� � 0� �
�N@2=2mR2����=�0�

2 � 2‘z��=�0��, which is mini-
mized when ‘z �

N
2 if �> 0 and ‘z � �

N
2 if �< 0; i.e.,

even a very small angular velocity leads to a nondegenerate
ground state with all N atoms at either k � �=L or k �
��=L. Generalizing to states differing from the � � 0
ground states by displacement in k space by integral multi-
ples of 2�=L, one obtains the �-dependent ground state
energy E0��� shown by the heavy line in Fig. 1, in which
the lighter lines show the lowest energies for ‘z �
	 N

2 ;	
3N
2 ; . . . . The ground state energy is a periodic func-

tion of � with period �0 in accord with a general theorem
[13], but, unlike the usual situation for a superconductor,
(a) there is no smaller period �0=2, and (b) for even N,
�0 � 0 is a relative maximum of E0 rather than a mini-
mum (as is the case of oddN), the first minima occurring at
� � 	�0=2. The barrier heights of the energy landscape
in Fig. 1 vanish like 1=N for N ! 1, so flux quantization
will not be observable for a macroscopic ring. However, it
may be observable for mesoscopic rings using BEC-on-a-
chip technology. For example, assuming a ring radius R �
5 �m, one finds that, for 6Li, �E> kBT for T < 50 nK.

Flow properties on a nonrotating ring.—According to
the FB mapping the excitation spectrum of the FTG gas is
the same as that of an ideal Bose gas, and, hence, it is
sufficient to analyze the latter. Since the excitation energy
of the ideal Bose gas is quadratic in the excitation momen-
tum @q, the FTG gas does not satisfy the Landau-
Bogoliubov criterion for superfluidity. We investigate
here the possibility of flow metastability associated with
barriers in the excitation energy landscape as a function of
the transferred momentum. It was shown by Bloch [16]
that for the usual ideal Bose gas, which corresponds to the
case of oddN in our treatment, no such barriers exist. In the
FIG. 1. Dependence of energies E on rotational flux �. Heavy
line: Ground state energy E0���. Lighter lines: Lowest energy
for each value of total angular momentum.
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case of even N, both the ground state and the excitation
branches are (N � 1)-fold degenerate, but it is sufficient
here to consider the ‘z � 0 ground state and the excitations
arising from it by promoting atoms to higher k values.
Generalizing Bloch’s analysis, we note that for 0< � �
N=2 the lowest branch corresponds to excitation of � atoms
from k � ��=L to k � 3�=L, yielding a state with angu-
lar momentum z component ‘z@, with ‘z � 2�, and with
excitation energy 	�‘z� � ‘z@2=mR2. At � � N=2, one has
reached a state differing from the ground state by trans-
lation of all atoms by an amount 2�=L in k space, and one
can repeat this process, promoting atoms from k � �=L to
5�=L, yielding another straight-line segment connecting
the points ‘z � N and ‘z � 2N on a parabolic curve
�‘z@�

2=2NmR2, etc. Together with symmetry 	�‘z� �
	��‘z�, this yields an excitation energy curve composed
of straight-line segments as in the dashed curve of Bloch’s
Fig. 2 [16] with the notation P � ‘z@=R. Hence, for both
odd and even N there are no energy barriers, and the FTG
gas on a nonrotating ring does not exhibit flow
metastability.

Expansion from a longitudinal harmonic trap.—We
focus finally on a 1D expansion, as could be achieved by
keeping on the transverse confinement. If the 1D interac-
tions are suddenly turned off before the gas is let free to
expand from a longitudinal harmonic trap, the density
profile at long times reflects the initial momentum distri-
bution [9]. If, instead, the interactions are kept on during
the expansion, we find that the density profile expands self-
similarly, while the momentum distribution evolves from
an initial overall Lorentzian shape [12] to that of an ideal
Bose gas. These properties can be demonstrated with the
aid of an exact scaling transformation as we outline below.
Since the FB mapping holds also for time-dependent
phenomena induced by one-body external fields [17], the
exact many-body wave function  F�x1; . . . ; xN; t� �
A�x1; . . . ; xN�

QN
j�1 �0�xj; t� during the dynamics is fully

determined by the solution of the single-particle
Schrödinger equation for the orbital �0�xj; t�. For the
case of an external potential Vext�x; t� � m!�t�2x2=2,
with !�0� � !0, the solution is known [18] to be
�0�x; t� � �0�x=b�t�; 0�eimx

2 _b=2b@�iE0
�t�=@, where b�t� is
the solution of the differential equation �b�!2�t�b �
!2

0=b
3, with b�0� � 1 and _b�0� � 0, 
�t� �

R
t
0 dt

01=b2,
and E0 � @!0=2. Since the unit antisymmetric wave
function A is invariant under the scaling transforma-
tion, we immediately obtain the expression for the

many-body wave function,  F�x1; . . . ; xN; t� �

b�N=2 F�x1=b; . . . ; xN=b; 0�ei�
_b=b!0�

P
N
j�1

x2
j =2x2

osce�iNE0
�t�=@,
and for the one-body density matrix, �1�x; x0; t� �
1
b �1�

x
b ;

x
b ; 0� expf�i� _b=b���x2 � x02�=2x2

osc�g. This yields
the momentum distribution as a function of time. While
the intermediate-time dynamics has to be determined nu-
merically, the stationary-phase method determines the
long-time evolution of the momentum distribution in the
4-3



FIG. 2. Momentum distributions of a FTG gas (solid lines)
with N � 9 particles as functions of the wave vector k at
subsequent times t (in units of 1=!0) during a 1D expansion
and asymptotic long-time expression (4) (dashed line).
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same way as for the bosonic TG gas [19]. For the case of a

1D expansion, the scaling parameter is b�t� �
�������������������
1�!2

0t
2

q
,

and the momentum distribution tends to that of an ideal
Bose gas under harmonic confinement,

n�k; t! 1� ’ j!0= _bjnB�k!0= _b�; (4)

where nB�k� � 2�Nj ~�0�k�j2, with ~�0�k� �
��1=4k�1=2

osc e�k
2=2k2

osc and kosc � 1=xosc. This behavior is
illustrated in Fig. 2. Quite noticeably, the bosonization
time appears to be much longer than the fermionization
time of the momentum distribution of the bosonic TG gas
[19]. Note that the ‘‘dynamical bosonization’’ described
above does not violate the Pauli exclusion principle: By
using the above scaling solution for the one-body density
matrix and fixing unit normalization of the natural orbitals
at all times, it follows that the eigenvalues �j of �1�x; x0; t�
are invariant during the expansion and, hence, always
satisfy the condition �j � 1.

In conclusion, we have found that (a) the untrapped
system exhibits superconductive ODLRO of the two-
body density matrix �2 associated with its maximal eigen-
value N=2 and pair eigenfunction C sgn�x1 � x2� �

e�2njx1�x2j; (b) on a ring it has a highly degenerate ground
state for an even atom number, and it exhibits quantization
of rotational Coriolis flux and high sensitivity to rotation
and to accelerations, making it a good candidate for high-
sensitivity detectors; (c) the harmonically trapped system
undergoes a ‘‘dynamical bosonization’’ of its momentum
distribution during a 1D expansion.
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