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Casimir Interaction between a Plate and a Cylinder
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We find the exact Casimir force between a plate and a cylinder, a geometry intermediate between
parallel plates, where the force is known exactly, and the plate sphere, where it is known at large
separations. The force has an unexpectedly weak decay �L=�H3 ln�H=R�� at large plate-cylinder
separations H (L and R are the cylinder length and radius), due to transverse magnetic modes. Path
integral quantization with a partial wave expansion additionally gives a qualitative difference for the
density of states of electric and magnetic modes, and corrections at finite temperatures.
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FIG. 1 (color online). Ratio of the exact Casimir energy to the
PFA for the geometry shown in the inset. All curves are obtained
at order 25 of the partial wave expansion, and the accuracy lies
within the line thickness even at small a=R. The Dirichlet data
points are from Ref. [19].
With recent advances in the fabrication of electronic and
mechanical systems on the nanometer scale, quantum ef-
fects like Casimir forces have become increasingly impor-
tant [1,2]. These systems can probe mechanical oscillation
modes of quasi-one-dimensional structures such as nano-
wires or carbon nanotubes with high precision [3].
However, thorough theoretical investigations of Casimir
forces are to date limited to ‘‘closed’’ geometries such as
parallel plates [4] or, recently, a rectilinear ‘‘piston’’ [5],
where the zero point fluctuations are not diffracted into
regions which are inaccessible to classical rays. A notable
exception is the original work by Casimir and Polder on the
interaction between a plate and an atom (sphere) at asymp-
totically large separation [6].

In this Letter we consider the electrodynamic Casimir
interaction between a plate and a parallel cylinder (or
‘‘wire’’), both assumed to be perfect metals (see inset of
Fig. 1). We show that the Casimir interaction can be
computed without approximation for this geometry. We
believe that the methods presented here may yield exact
solutions for other interesting geometries as well. This
geometry is also of recent experimental interest: keeping
two plates parallel has proved very difficult. The sphere
and plate configuration avoids this problem, but the force is
not extensive. The cylinder is easier to hold parallel and the
force is extensive in its length [7].

Casimir interactions, while attractive for perfect metals
in all known cases, depend strongly on geometry. Consider
the Casimir interaction energy (discarding separation in-
dependent terms) at asymptotically large H for three fun-
damental geometries which differ in the codimension of
the surfaces [8]: two plates, plate-cylinder, and finally,
plate-sphere, corresponding to codimension 1, 2, and 3,
respectively. It is instructive to consider both a scalar field
which vanishes on the surfaces (D � Dirichlet) and the
electromagnetic field (EM). For parallel plates (area A)
E� @cA=H3 in both cases [4]. For a plate and a sphere
of radius R, E� @cR=H2 [9] for the Dirichlet case, as
compared with E� @cR3=H4 for the EM case [6]. Based
on these results, expectations for the plate and cylinder
06=96(8)=080403(4)$23.00 08040
geometry might range from �@cLR2=H4, proportional to
the cylinder volume, to �@cLR=H3, proportional to its
surface area, or even �@cL=H2 with a potential nonpower
law dependence on the radius.

A simple but uncontrolled method for study of non-
planar geometries is the proximity force approximation
(PFA), where the system is treated as a sum of infinitesmal
parallel plates [10]. Applied to the plate-cylinder geometry,

the PFA yields EPFA � �
1
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3
@cL

��������������
R=2a5

p
to leading

order in a=R, where a � H � R. Other approximations
include semiclassical methods based on the Gutzwiller
trace formula [11], and a recent optical approach which
sums also over closed but nonperiodic paths [12]. For large
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separations, a multiple scattering approach is available
[13], but has not been adapted to this geometry. For the
Dirichlet case, a Monte Carlo approach based on world line
techniques has been applied to the plate-cylinder case [14].

Our result provides a test for the validity of these ap-
proximate schemes, and also provides insight into the large
distance limit. In particular, we find the unexpected result
that the electrodynamic Casimir force for the plate-
cylinder geometry has the weakest of the possible decays,

F � �
1

8�
@cL

H3 ln�H=R�
; (1)

as H=R! 1. The same asymptotic result applies to a
scalar field with Dirichlet boundary conditions. Inter-
estingly, the decay exponent of the force is not monotonic
in the number of codimensions: (�4;�3� �;�5) for co-
dimension �1; 2; 3�, respectively. In contrast, the Dirichlet
case is monotonic with exponents (�4;�3� �;�3).

In the remainder we derive these results, summarized in
Eqs. (5)–(8), using path integral techniques. Our approach
also yields the distance dependent part of the density of
states, and thermal contributions to the force.

The translational symmetry along the cylinder axis en-
ables a decomposition of the EM field into transverse
magnetic (TM) and electric (TE) modes [15] which are
described by a scalar field obeying Dirichlet (D) or
Neumann (N) boundary conditions, respectively. We can
compare our TM results to recent Monte Carlo Dirichlet
results [14]. Moreover, the mode decomposition turns out
to be useful also in identifying the physical mechanism
behind the weak decay of the force, which at large distance
is fully dominated by D modes.

Our starting point is a path integral representation [16]
for the effective action which yields a trace formula for the
density of states (DOS) [17]. The latter is then evaluated
using a partial wave expansion. The DOS on the imaginary
frequency axis is related to a Green’s function by ��iq0� �
�2q0=��

R
d3xG�x;x; q0�, where G�x;x0; q0� is the

Green’s function for the scalar field with action S � 1
2 	R

d3x�jr�j2 
 �q0�2�2�. The effect of boundaries on the
Green function can be obtained by placing functional delta
functions on the boundary surfaces in the functional inte-
gral [16]. By integrating out both the field � and the
auxiliary fields which represent the delta functions on the
surfaces, one obtains the trace formula [17]

���q0� � �
1

�
@
@q0

Tr ln�MM�1
1 �; (2)

where ���q0� is the change in the DOS caused by moving
the plate and cylinder in from infinity. The information
about geometry is contained in the matrix M of the qua-
dratic action for the auxiliary fields, given by
M���u;u0; q0� � G0�s��u� � s��u0�; q0� for D and by
M���u;u0; q0� � @n��u�@n��u0�G0�s��u� � s��u0�; q0� for

N boundary conditions; G0 � e�q0jxj=4�jxj is the free
space Green function, @n� is its derivative normal to the
08040
surface, and s��u� parametrizes the surfaces (which are
numbered by � � 1; 2) in terms of surface coordinates u.
M�1
1 is the functional inverse of M at infinite surface

separation. The trace in Eq. (2) runs over u and �. For
the cylinder with its axis oriented along the x1 direction we
set s1�x1; ’� � �x1; R sin�’�; R cos�’�� and for the plate
s2�x1; x2� � �x1; x2; H� (see inset of Fig. 1).

The Casimir energy of interaction is given by E �
�@c=2�

R
1
0 dq0q0���q0�. After transforming to momentum

space, ~M, the Fourier transform of the matrix M has block
diagonal form with respect to q0 and the momentum q1

along the cylinder axis, so the Casimir energy can be
expressed as,

E �
@cL

8�2

ZZ
dq0dq1 ln

det ~M�q0; q1�

det ~M1�q0; q1�
: (3)

The elements of the matrix M are labeled by the integer
index m � �1; . . . ;1 coming from the compact ’ di-
mension of the cylinder, and the momentum q2 along the
other direction parallel to the plate, to read

~M �
A�m;m0� B�m;q02�
BT
�q2;m0�

C�q2;q02�

 !
: (4)

The matrix A�m;m0� is diagonal, with elements A�m;m� �
Am � Im�ru�Km�ru� for D and Am � �u=H�2I0m�ru� 	
K0m�ru� for N modes. The matrix C also has only diagonal

elements C�q2;q2�
� C�q2� � H=�2
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u2 
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q
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q
=�2H� for N modes. The off-diagonal

matrix B is nondiagonal with B�m;q2�
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q
���m for N modes. Here, we have defined the

dimensionless combinations u � H
�����������������
q2

0 
 q
2
1

q
, u2 � Hq2,

and r � R=H. The determinant can be obtained straight-
forwardly, and the total energy can be decomposed to the
sum of D and N mode contributions, as

E � �
@cL

H2 ��
D�r� 
�N�r��; (5)

with

�X�r� � �
1

4�

Z 1
0
duu lnfdet�1� NX�u; r��g: (6)

The matrix NX�u; r� is given in terms of Bessel functions,

ND
���u; r� �

I��ru�
K��ru�

K�
��2u�; (7)

for D modes and

NN
���u; r� � �

I0��ru�
K0��ru�

K�
��2u�; (8)
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FIG. 2 (color online). The change in the density of states for
(a) Dirichlet and (b) Neumann modes obtained from Eq. (10) at
order l. The solid curves show the small R expansion of Eq. (11).
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for N modes. The determinant in Eq. (6) is taken with
respect to the integer indices �, � � �1; . . . ;1. If the
matrix NX is restricted to dimension (2l
 1) with NX

00 as
the central element, it then describes the contribution from
l partial waves, beginning with s waves for l � 0.

From Eq. (6), one can easily extract the asymptotic large
distance behavior of the energy for r � R=H� 1. For
Dirichlet modes s waves dominate, while for Neumann
modes both s and p waves (l � 1) contribute at leading
order in r. The two cases differ qualitatively, with

�D�r� � �
1

16�
1

lnr
; and �N�r� �

5

32�
r2: (9)

For H� R the EM Casimir interaction is dominated by
the D (TM) modes. Note that a naı̈ve application of the
PFA for small r, where it is not justified, yields the in-
correct scalings �D�r� � �N�r� � r.

The natural expectation from the Casimir-Polder result
for the plate sphere interaction, that the force at large
distance is proportional to the volume of the cylinder, is
incorrect. The physical reason for this difference is ex-
plained by considering spontaneous charge fluctuations.
On a sphere, the positive and negative charges can be
separated by at most distances of order R� H. The re-
tarded van der Waals interactions between these dipoles
and their images on the plate leads to the Casimir-Polder
interaction [6]. In the cylinder, fluctuations of charge along
the axis of the cylinder can create arbitrary large positively
(or negatively) charged regions. The retarded interaction of
these charges (not dipoles) with their images gives the
dominant term of the Casimir force. This interpretation is
consistent with the difference between the two types of
modes, since for N modes such charge modulations cannot
occur due to the absence of an electric field along the
cylinder axis. Eventually, for a finite cylinder, in the very
far region H� L, the charge fluctuations can be consid-
ered again as small dipoles, and the Casimir-Polder law is
expected to reappear, making the force proportional to the
volume of the cylinder LR2.

We next consider arbitrary separations, and use Eq. (6)
to obtain the contribution from higher order partial waves.
A numerical evaluation of the determinant is straightfor-
ward, and we find that down to even small separations of
a=R � 0:1 the energy converges at order l � 25, whereas
for a=R * 1 convergence is achieved for l � 4. Figure 1
shows our results for Dirichlet and Neumann modes and
for their sum which is the EM Casimir energy, all scaled by
the corresponding EPFA given above [18]. Both types of
modes show a strong deviation from the PFA for a=R * 1,
especially the Dirichlet energy. Figure 1 shows also very
recent word-line-based Monte Carlo results for the
Dirichlet case at moderate separations [19], which agree
nicely with our exact results.

Note that the asymptotic Dirichlet result of Eq. (9) is
also valid for R! 0 at fixed H, i.e., when the cylinder is
replaced by an infinitesimal thin wire. The length scale R is
then replaced by a UV cutoff corresponding to some
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physical characteristic of the wire. This result illustrates
the fact that the asymptotic form of Eq. (9) is independent
of the actual shape of the cross section of the wire since the
cutoffR can be identified with any typical scale of the cross
section. The leading asymptotic term in Eq. (9) is also
obtained [8] from the s wave scattering amplitude for the
two-dimensional problem of a strongly repulsive potential
concentrated on the wire.

The difference between the D and N modes also appears
in the DOS, which in turn affects the temperature depen-
dence of the Casimir force. From Eq. (2) we obtain

��X�q0� � �
q0HL

�2

Z 1
0

du

u2

	 ln
det�1� NX�

������������������������������
u2 
 �q0H�2; r

p
��

det�1� NX�q0H; r��
; (10)

which is convenient both for numerical and analytic com-
putations. Numerical evaluation yields the results shown in
Fig. 2 for general values of R. Analytical results in the limit
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of small R=H are obtained by considering the s waves for
D modes, and the s and pwaves for N modes. For D modes
we expand in 1= ln�q0R�, whereas for N modes we expand
in r � R=H. To leading order,

��D�q0� �
L

2�
e�2q0H

ln�q0R�

O�ln�2�q0R��; (11a)

��N�q0� � �
q0HL

8�
�1
 6q0H�e�2q0Hr2 
O�r3�: (11b)

Figure 2 allows for an assessment of the validity range of
the expansions of Eq. (11) which are shown as solid curves.

These results for the DOS allow us to evaluate for the
first time finite temperature contributions to the Casimir
interaction in an open geometry. The difference between
the free energy F and the Casimir energy at T � 0 can be
written as [13] (kB is Boltzmann constant)

�F � F � E � �kBT
Z 1

0
dq0g�q0����q0�; (12)

with the function g�q0� �
P
1
k�1 sin�2�kq0	T�=��k� and

	T � @c=�2�kBT�. In the limit R� �H;	T� but for gen-
eral H=	T , we can use the expansion of Eq. (11) to obtain
to leading order in 1= ln�R=	T� and R=H for D and N
modes, respectively, the thermal contributions

�F D �
kBT

8

L
ln�R=	T�H

�
coth

�
H
	T

�
�
	T
H

�
; (13a)

�F N � �
kBT
64

L	TR
2

H4

�
7
H
	T

coth
�
H
	T

�



7�H=	T�
2

sinh2�H=	T�


 6
�
H
	T

�
3 cosh�H=	T�

sinh3�H=	T�
� 20

�
: (13b)

It is interesting to note that �F N has a minimum at
H=	T � 2:915 . . . , where the corresponding thermal force
changes from repulsive at small H to attractive at large H.
At low temperatures, the finite T contributions to the
Casimir force �F � �@�F =@H,

�FD �
2�3

45
kBT

�
kBT
@c

�
3 HL

ln�R=	T�
; (14a)

�FN �
64�5

945
kBT

�
kBT
@c

�
5
R2HL; (14b)

have to be added to Eq. (1) for H� 	T . At larger tem-
peratures with R� 	T � H, one has the scalings �FD �
kBTLH�2= ln�R=	T� and �FN ��kBTLR2H�4. At the
extreme high temperature limit of 	T � R, only thermal
fluctuations remain, and @ should disappear from the equa-
tions. This ‘‘classical limit’’ is well known for parallel
plates [20] and is obtained for smooth, arbitrary geometries
within the multiple scattering approach [13], and the opti-
cal approximation [21]. (Note that for the D modes a
subleading @ still survives in the logarithm.)
08040
Finally, we note that our approach can be extended also
to multiple wires and distorted beams. Our results should
be relevant to nanosystems composed of one-dimensional
structures and also to other types of fields as, e.g., thermal
order parameter fluctuations.
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