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Functional Modes of Proteins Are among the Most Robust
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It is shown that a small subset of modes which are likely to be involved in protein functional motions of
large amplitude can be determined by retaining the most robust normal modes obtained using different
protein models. This result should prove helpful in the context of several applications proposed recently,
like for solving difficult molecular replacement problems or for fitting atomic structures into low-
resolution electron density maps. It may also pave the way for the development of methods allowing

us to predict such motions accurately.
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For two-domain proteins, it is well known that a few
low-frequency normal modes can provide a fair descrip-
tion of their large amplitude motion upon ligand bind-
ing [1-3]. Recently, it has been shown that this is also
true for proteins with complex architectures [4—8], as long
as their functional motion is a collective one, i.e., if it
concerns large parts of the structure [9—11]. For instance,
a single mode of the 7" form of hemoglobin is enough to
describe accurately its conformational change upon oxy-
gen binding [5].

This result has been successfully applied for exploiting
fiber diffraction data [12,13], solving difficult molecular
replacement problems [14,15], or fitting atomic structures
into low-resolution electron density maps [15-17]. The
principle of these applications is to perturb a known struc-
ture along its low-frequency modes so as to get a deformed
structure that is consistent with low-resolution biophysical
data, which are obtained after the protein has undergone
some large amplitude conformational change. It was also
shown that when variations of a few key distances are
known, through spectroscopic measurements, for instance,
it is possible, using linear response theory, to identify
which modes are the most involved in the conformational
change [18,19]. However, if such experimental data are
missing, it is difficult to guess which low-frequency modes
are the functional ones. Hereafter, we show that they are
among the most robust ones, i.e., among the most con-
served modes when different models are considered. The
robustness of the functional modes was recognized when it
was shown that they can be obtained [9-11] with simple
protein descriptions, like elastic network (EN) models
[20—23]. Herein, this property is used so as to identify
them.

First, standard normal modes were calculated for a set of
five proteins of different sizes and architectures after pre-
liminary energy minimization. The CHARMM program [24]
was used, with the EEF1.1 implicit solvent model [25], as
done in recent studies performed at this level of detail [26].
Then, for each energy-minimized structure, low-frequency
normal modes were calculated with the all-atom EN model
proposed by Tirion [21], where the many-parameters em-
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pirical energy function £, used in programs like CHARMM
is replaced by:

Ep = Z C(dlj - d(l-)j)z,

&) <R,

where d;; is the distance between atoms i and j, d?j being
their distance in the studied structure. The strength of the
potential C is a constant assumed to be the same for all
interacting pairs. It is required only in order to define units.
As done in previous studies [14], R, the cutoff parameter,
is set to 5 A.

In order to compare both sets of normal modes, n¢f, the
effective number of EN modes involved in the description
of standard mode i, is calculated as follows [27]:

n
net = exp[—ZaIizj In(al?)],

where n is the number of EN modes taken into account
(n = 100 herein), I;; being the scalar product between
standard mode i and EN mode j. The normalization factor
a is such that: ¥ allzj = 1. Thus, n¢ gives the effective
number of nonzero I%. It ranges from 1 to n. As shown in
Fig. 1, for each protein considered, a few standard modes,
with low ranking, can be described accurately with less
than 5—-6 EN modes. For a given protein, the set of such
modes defines a subspace which is robust, that is, well
conserved when modes are calculated with very different
models.

Next, such robust modes were sought for, using this time
two different EN models. In both cases, as often done [9—
11,20,22,23,28], only C, atoms are kept. In the first model,
pairs of interacting neighbors are determined according to
a distance-cutoff criterion. Setting R, to a value lower than
8—10 A splits the elastic network into several independent
ones and the number of zero-frequency modes becomes
larger than 6. To avoid this artifact, values of 10—15 A have
been used [9,19,28]. For adenylate kinase, with R, =
12 A, n,, the average number of interacting neighbors
per C, atom is 25 = 7, ranging from 10 to 42, as a function
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FIG. 1. Effective number of EN normal modes involved in the
description of each standard mode of five proteins. Cross:
Lysozyme T4 (pdb code 1781). Plus: Adenylate kinase (4ake).
Open square: Glutamin binding protein (1ggg). Filled square:
LAO binding protein (2lao). Open circle: DNA polymerase 3
(1bpx). Modes are ranked according to increasing frequencies.

of the degree of burial of the amino acid in the protein
interior.

We designed the second EN model so as to keep n, as
constant as possible from one amino acid to the other. To
do so, the following algorithm was used. First, all pairs of
C, atoms are sorted, according to their distance. Then,
starting from the atom pair separated by the largest dis-
tance, they are removed one after the other, unless one
atom of the pair has already n, neighbors. With this
algorithm, setting n, = 10, the average distance between
pairs of interacting neighbors is 6.2 + 1.8 A, close to
typical cutoff values used for determining contacts be-
tween amino acids in proteins [29]. In the case of adenylate
kinase, n, can be set to a value as low as 7 (see Fig. 2)
without splitting the network into independent ones.

As done above, normal modes obtained with both EN
models were compared, seeking for robust ones, for a set of

FIG. 2. The open form of adenylate kinase (pdb code 4ake).
Right: the new N-neighbors elastic network model introduced in
this study. Most C, atoms are linked to seven neighbors (N =
7). Drawn with Molscript [31].

22 proteins considered in previous studies performed with
the distance-cutoff criterion [9,10,14]. Like in the case of
all-atom models, modes are considered to be robust when-
ever n¢ft < 6. Statistics of the number of robust modes
found for all studied proteins are shown in Fig. 3. In most
cases, the number of robust modes is four or less. In only
three cases, it is larger than 7. Not surprisingly, they
correspond to proteins with large sizes (more than
500 amino acids) and complex architecture, like the
DNA polymerase of bacteriophage RB69 (pdb code
1ih7), which is the protein of our data set with the largest
number of robust modes (eleven). In four cases, no robust
mode is found. Interestingly, the known conformational
change of these proteins, namely, tyrosine phosphatase,
triose phosphate isomerase, che Y, and HIV-1 protease
(pdb codes 1yts, 3tim, 3chy, 1hhp, respectively), is a small
amplitude one, with a C, root-mean-square displacement
(rmsd) of 1.5 A at most.

Then, it was checked that robust modes yield accurate
descriptions of protein functional motions. To do so, Oy,
the quality of the motion description is calculated as fol-
lows [5,10]:

0= 100&1;,,

where 7 is the number of modes taken into account in the
description and [;; is the scalar product between mode i
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FIG. 3. Number of robust normal modes found by comparing
modes obtained with different protein models. For a first set of
five proteins, standard modes were compared to modes obtained
with an all-atom EN model. For a second set of 22 proteins (pdb
codes 1781, 1a3n, laro, 1bpx, 1cb6, lggg, lhhp, 1hil, 1ih7,
lomp, lusg, lyts, 2ktq, 3chy, 3tim, 3tms, 4ake, 4tgl, Scsc,
5dfr, 8adh, 9aat), modes obtained with two different C,-EN
models were compared. Modes are considered to be robust when
they can be described accurately with at most six modes obtained
with the other model.
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and the direction of the conformational change observed
by crystallographers. Note that Q,; = 100% when all
modes are included in the description, since they form a
complete basis set.

As shown in Fig. 4, the conformational change of lacto-
ferrin upon ligand (iron) binding can be described accu-
rately (Q, over 85%) as a linear combination of the seven
lowest-frequency modes of the open form (pdb code 1cb6).
Interestingly, all seven modes are found to be robust. In
Fig. 5, Q, is given as a function of the amplitude of the
functional motion of each protein considered when n =
100 normal modes or when only the robust ones are taken
into account in the description. For most proteins with
small amplitude motions, i.e., of less than 2-3 A of
rmsd, robust modes fail to capture any information about
the nature of the known conformational change, while in
several cases some information is indeed present in the
normal modes. For instance, as mentioned above, for HIV-
1 protease no robust mode is found, although a single EN
mode is enough for describing 50% of its conformational
change upon ligand binding [9]. If two other EN modes are
added to the description, Q, can reach a value of 77% (with
n =100, Q,; = 89%).

On the other hand, when considering proteins with large
amplitude motions, the description of the conformational
change with robust modes is almost as accurate (Q, over
75%) as when n = 100 normal modes are taken into
account. The only counter example is adenylate kinase,
whose rmsd upon ligand binding is 5.3 A. As a matter of
fact, when standard normal modes of adenylate kinase are
compared to all-atom EN ones, only a single robust mode
is found (see Fig. 1), and it is not involved in the conforma-
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FIG. 4. Quality of the description of the closure motion of
lactoferrin upon ligand binding, as a function of the number of
low-frequency normal modes (black points) considered. Boxes:
contribution of each robust mode to the description.

tional change (Q, = 4%). However, using the pair of
C,-EN models, six robust modes are found and they allow
for an almost perfect description of the conformational
change (Q; = 91%).

Of course, when using all-atom models, more robust
modes can be obtained by raising the robustness criterion.
In the case of adenylate kinase, if a given mode is said
robust whenever n¢f < 10, then five robust modes are
found. However, it is still not enough (Q, = 73%) for
describing its conformational change as well as with robust
modes obtained using C,-EN models. Raising the robust-
ness criterion so as to obtain six robust modes does not
change significantly the quality of the description (Q, =
77%). As a matter of fact, robust modes obtained using all-
atom models always yield poorer description of protein
functional motions than when using simpler models, in
which only C, atoms are kept (open circles are below
open squares in Fig. 5). This is likely due to the fact that
standard normal mode analysis requires a preliminary
energy minimization, during which the structure is signifi-
cantly distorted, while normal mode analysis of EN models
does not, as illustrated by the case of DNA polymerase £3.
For this protein, when the C,-EN models are built using
the crystal structure (pdb code 1bpx), seven robust modes
are found, which are able to describe accurately (Q,; =
84%) the conformational change upon nucleotide binding.
However, when they are built using the energy-minimized
structure, only three robust modes are found, which are not
able to describe the conformational change (Q,; = 21%)
much better than the three ones obtained using all-atom
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FIG. 5. Quality of the description of protein functional motions
with 100 low-frequency modes (filled symbols) or with only the
robust ones (open symbols), as a function of the amplitude of the
motion. Five proteins were studied at the all-atom level (circles)
and the other ones at the amino-acid level (squares).
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models (Q; = 16%). In that case, the distortion due to
energy minimization is large (rmsd = 2.5 A), as a conse-
quence of the removal of the ligand, a 16 base pair DNA,
prior to the calculation. However, protein distortions upon
energy minimization are usually not that large (rmsd =
1-2 A) and further work is required in order to fully clarify
the origin of this counterintuitive, slight but systematic,
effect.

In the present study, modes obtained with different
protein models were compared. For most protein cases,
several robust modes are found, confirming results ob-
tained previously [9,20—23,30], namely, that the lowest-
frequency modes are little sensitive to details in the protein
description. Since in the case of current EN models atom-
atom interactions are defined with a distance-cutoff crite-
rion, this can be explained in two different ways. First,
robust modes may capture information about the protein
mass distribution in space. Second, they may capture in-
formation about the rigidity of the protein in the vicinity of
each amino-acid residue. Indeed, with a distance-cutoff
criterion, amino acids in the protein interior are more rigid
(more neighbors) than those on the surface (less neigh-
bors). So, we designed a novel C,-EN model whose main
raison d’étre was to decide between these two possibilities.
In this model, each C, atom has a given number of
interacting neighbors and rigidity is fairly constant from
one point of a protein to another. When modes obtained
with this model are compared to those obtained with a
C,-EN model based on the distance-cutoff criterion, robust
modes are also found. This means that they are also not
sensitive to the distribution of rigidity in the protein.

Moreover, we have shown that these robust modes are
likely to be involved in protein functional motions, at least
when the functional motion is a large amplitude one
(rmsd = 2-3 A). This result should prove helpful in the
context of applications like those mentioned in the intro-
duction, since they all concern large amplitude conforma-
tional changes [14-17].

This result could also pave the way for the development
of methods allowing to predict such motions accurately,
i.e., to predict their amplitude, since exploring a subspace
of small dimensionality (three or four in most cases con-
sidered) should be enough for finding conformations close
to functional ones. Interestingly, seeking for robust modes
could also indicate whether a given protein can exhibit a
large amplitude functional motion or not. Indeed, the func-
tional motions of the proteins found to have no robust
mode are small amplitude ones.
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