
PRL 96, 078102 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
24 FEBRUARY 2006
Continuum Theory of Retroviral Capsids
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We present a self-assembly phase diagram for the shape of retroviral capsids, based on continuum
elasticity theory. The spontaneous curvature of the capsid proteins drives a weakly first-order transition
from spherical to spherocylindrical shapes. The conical capsid shape which characterizes the HIV-1
retrovirus is never stable under unconstrained energy minimization. Only under conditions of fixed
volume and/or fixed spanning length can the conical shape be a minimum energy structure. Our results
indicate that, unlike the capsids of small viruses, retrovirus capsids are not uniquely determined by the
molecular structure of the constituent proteins but depend in an essential way on physical constraints
present during assembly.
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The life cycle of an HIV-1 retrovirus begins when RNA
viral genome molecules inside an infected host cell are
enclosed by an immature, roughly spherical, shell of
‘‘Gag’’ proteins [1]. The ‘‘nucleocapsid’’ (NC) portion of
this Gag protein binds to the RNA molecules, driving
genome packaging, while the ‘‘matrix’’ (MA) region binds
to the host cell membrane, leading to envelopment of the
protein shell by a lipid bilayer, followed by escape (‘‘bud-
ding’’) of the virus from the cell. Upon budding, the Gag
protein undergoes self-cleavage into three separate por-
tions —NC, CA, and MA—resulting in disassembly of
the immature capsid and release of the middle ‘‘capsid
protein’’ (CA) portion. The CA proteins self-assemble
into the mature capsid that contains two copies of the viral
genome, along with some cellular RNA and one copy of
the reverse transcriptase protein [2]. A retroviral capsid—
still enveloped by the lipid bilayer—has a typical size of
about 100 nm. Most retroviral genera have spherical cap-
sids, type D and beta retroviruses are spherocylindrical,
while the lentiviruses (e.g., HIV-1) are conical [3].

Electron microscopy of single-molecule-thick sheets of
CA proteins reveals a basic structural motif that consists of
hexameric CA rings, with a diameter of about 10 nm and
local p6 symmetry, hooked together by dimerized
C-terminal domains belonging to adjacent hexamers [4].
Spherical, spherocylindrical, and conical retroviral capsids
all share this organizational principle. The different shapes
are distinguished [5] by the distribution of the 12 protein
pentamers, which—according to Euler’s theorem—have
to be inserted into the hexagonal lattice for it to be able to
form a closed shell. For spherical shells, these 12 pentamers
must be equidistant; for spherocylindrical shells, each of
the two caps contains six pentamers, while for conical
shells the larger cap must contain seven (or more) pentam-
ers and the smaller cap five (or fewer).
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The three canonical shapes can all be reproduced under
in vitro conditions by direct self-assembly of purified HIV-
1 CA protein and its mutants [3], hence necessarily without
the enclosing membrane. This would appear to indicate
that the three capsid shapes represent competing free en-
ergy minima of CA protein aggregates, with the molecular
structure of the capsid protein determining capsid shape, as
is indeed the case for many self-assembling smaller vi-
ruses. In vivo studies indicate that, unlike capsids of small
viruses, HIV-1 capsids have a broad distribution of sizes or
shapes [6].

Establishing a connection between variants of the CA
protein structure and capsid shape by an all-atom
molecular-dynamic simulation would be a forbidding task
in view of the enormous size of the capsids (about 1500 CA
proteins) and incomplete information regarding the de-
tailed subunit interactions. In this Letter, we apply contin-
uum elasticity theory to thermodynamically determine a
shape phase diagram for retroviruses. (Alternatively, inter-
pretation of spherical capsid assembly also has been based
on consideration of growth kinetics [7]. However, no such
interpretation for conical capsids has been proposed.) It
was shown by Lidmar, Mirny, and Nelson (LMN) [8] that
the continuum elasticity theory for hexagonal shells can
account for global features of larger icosahedral viral
capsids, such as the ‘‘buckling transition’’ by which facet-
ing arises in capsids upon increase in their size and/or their
ratio of stretching to bending moduli. We have extended
this approach to treat nonicosahedral shapes, specifically
the spherocylinder and cone, by including the possibility of
a nonzero spontaneous curvature for the 2D lattice of
capsid protein [9]. The various sizes and shapes of viral
capsids could then, in principle, be understood by relating
the phenomenological moduli of continuum theory to the
structural variants of the CA protein.
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FIG. 1 (color online). CK isometric construction of a spherical
shell. (a) Folding template for an icosahedron. The template is
indexed by the lattice vector ~A � h ~a1 � k ~a2 of a hexagonal
lattice with basis vectors ~a1 and ~a2. (b) The case h � 3 and k �
1. (c) The corresponding icosahedron.
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FIG. 2 (color online). Nonicosahedral isometric shells.
(a) Folding template of an isometric spherocylinder. The tem-
plate is indexed by two perpendicular vectors ~A � n�h ~a1 � k ~a2�

and ~B � m�h ~b1 � k ~b2�, with m> n two positive integers.
(b) The four vectors ~a1, ~a2, ~b1, and ~b2. (c) Isometric spherocy-
linder with �m; n; h; k� � �4; 2; 1; 0�. (d) Folding template of an
isometric 5–7 cone. The template is indexed by two parallel
vectors ~A � n�h ~a1 � k ~a2� and ~B � m�h ~a1 � k ~a2�. (e) Isometric
5–7 cone with �m; n; h; k� � �4; 3; 1; 0�.
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Continuum elasticity theory assigns an energy H to a
hexagonal sheet that is the sum of an ‘‘in-plane’’ stretching
energy Hs and an ‘‘out-of-plane’’ bending energy HB.
We evaluated H numerically by approximating the capsid
shape as a closed triangular net containing 12 sites of
fivefold coordinations. The in-plane elastic energy Hs is
given as the pairwise sum of harmonic interaction poten-
tials between nearest neighbors nodes i and j of the net:

H s �
"
2

X

ij

�j ~ri � ~rjj � a�2: (1)

Here a is the equilibrium spacing of the harmonic potential
and " the spring constant. This equilibrium spacing should
not be viewed as the spacing between CA proteins but
merely as a short distance cutoff for the numerical compu-
tation of the continuum elastic energy. The spring constant
is related to the (2D) Young’s modulus of the continuum
theory by Y � 2"=

���
3
p

[LMN]. The out-of-plane bending
energy HB is given as a pairwise interaction between the
normal directions n̂I of neighboring triangles of the net:

HB � k
X

IJ

�1� cos��IJ � �0��: (2)

Here �IJ is the dihedral angle between the normal direc-
tions n̂I and n̂J of two adjacent triangles I and J. The
energy scale k is related to the bending or Helfrich modulus
of continuum theory by � �

���
3
p
k=2 [LMN]. By comparing

measured and computed icosahedral capsid shapes, LMN
found that Y=� ’ nm�2, while nanoindentation studies
[10] of viral capsids yield values for � in the range of
10–100kBT. The preferred dihedral angle �0 is related to
the spontaneous curvature of continuum theory by C0 �

2�0=
���
3
p
a; nonzero C0 is formally associated with the

absence of an ‘‘up-down’’ mirror symmetry of the CA
proteins [11] to the lowest order. Because capsid proteins
arrange in a hexagonal lattice, to the lowest order, we can
assume the capsid shell to be effectively isotropic in the in-
plane directions [12].

The starting shapes of the simulation studies were de-
termined by isometric construction, i.e., shapes con-
structed by folding inextensible templates cut from a
hexagonal lattice into spherical, spherocylindrical, or coni-
cal shells. The isometric construction provides the standard
Caspar-Klug (CK) classification of icosahedral viruses
[13] (Fig. 1) and can be extended to spherocylinders and
cones [9] (Fig. 2). As shown in Fig. 2, a right isometric
cylindrical shell can be classified by four positive integers
m, n, h, and k with the m=n ratio proportional to the aspect
(length-to-width) ratio. The number of nodes on such a
shell is 10mn�h2 � k2 � hk� � 2. A right 5–7 isometric
cone is also classified by four integers m, n, h, and k, now
with m=n proportional to the ratio of the diameters of the
two caps. The number of nodes on such a shell is 10�2m2 �
n2��h2 � k2 � hk� � 2. By choosing a large enough num-
ber of nodes on the triangular net, one can simulate the
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corresponding spherocylinder and conical continuum
shells with high accuracy. Earlier studies [8,9] show that
the continuum limit is reached when the number of nodes
exceeds 10 000. In this limit, the shell elastic energy does
not depend on the specific values for �m; njh; k� but de-
pends only on two dimensionless parameters: the Föppl–
von Kármán (FvK) number � � YS=�, specifying the ratio
of stretching and bending energies, and the dimensionless
spontaneous curvature � � 2�0S

1=2=
���
3
p
a. In our simula-

tion, for simplicity, we fix h � 1 and k � 0. For the
reference icosahedral shell, we choose m � n � 55 corre-
sponding to a triangular net of 30 252 nodes.

Using these isometric shell shapes, we minimized the
elastic energy with respect to shell shape by the conjugate
gradient method [14]. The capsid surface area S was
maintained fixed, but the enclosed volume was allowed
to vary freely since empty viral capsids produced by
in vitro self-assembly are not under osmotic pressure. For
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a given shape family, conical or spherocylinderical, we
calculate the capsid energy for a different aspect ratio
m=n and choose the shape with the optimum aspect ratio
whose energy is lowest. For a given set of parameters
(�;�), we compare the optimum cone with that of the
optimum spherocylinder and the reference sphere to deter-
mine the thermodynamically most stable shape. The result-
ing shape phasediagram is shown in Fig. 3.

A first-order transition line separates icosahedral from
spherocylindrical shells while a buckling threshold at �B ’
3000 separates (approximately) spherical from (approxi-
mately) polyhedral shells. The FvK number of a retrovirus
such as HIV-1 is of the order of 2	 104 for Y=� ’ nm�2

(see Fig. 3), significantly above the buckling threshold.
Microscopy studies of conical retroviral capsids reveal
that they are indeed distinctly polyhedral [6,11,15].
Interestingly, for FvK numbers in this range, the shape
transition is either weakly first-order or continuous. A
more detailed study of the sphere-spherocylinder shape
transition can be found in our previous work (Ref. [9]).

The shape phase diagram Fig. 3 would account for the
many retrovirus genera with spherical and spherocylindri-
cal shapes, if we assume that the spontaneous curvature
parameter � for the various CA proteins lies in the range of
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FIG. 3 (color online). Shape phase diagram at fixed area S.
The vertical axis is the FvK number � � YS=�, and the hori-
zontal axis the dimensionless spontaneous curvature � �
2�0S
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a. The buckling threshold �B ’ 3000 separates

spherical from polyhedral shells. The black squares show the
phase boundary obtained from numerical simulation. On
the right side of this boundary, the spherocylinder shape has
the lowest energy. Three such shapes close to the transition line
are shown for small, intermediate, and large � (all shapes have
the same area but they are scaled to fit the allotted space). The
FvK number of HIV-1 capsids is of the order of 2	 104 (dotted
line).
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3–7. The near continuous nature of the transition also
would be consistent with the polymorphism observed in
CA self-assembly. A baffling prediction of the continuum
theory is, however, that lentivirus conical shells never
constitute a minimum of the elastic energy. For FvK num-
bers of the order of 104, the elastic energy of a conical shell
is about 5� higher than that of a spherocylindrical shell,
which would mean that, under conditions of thermody-
namic self-assembly, the ratio of cones to spherocylinder
populations would be very small.

Self-assembly under in vitro conditions of HIV-1 ‘‘wild-
type’’ CA proteins indeed produces long cylindrical shells
with only a small fraction of cones. The cone-to-cylinder
ratio is, however, greatly enhanced (to about 2=3) when the
CA proteins are fused to the NC (i.e., RNA binding) part of
the Gag protein with assembly taking place in the presence
of viral RNA molecules [15]. In this case, RNA genome
molecules are trapped inside the capsid, which places a
volume constraint on the shell. Finally, under in vivo con-
ditions, assembly produces a majority fraction of cones and
a minority fraction of spherocylinders. In that case, a
second constraint is operative: Electron micrographs [6]
of in vivo assembled capsids indicate that the spanning
length of both capsid types is limited by the diameter of
the surrounding spherical membrane. These two con-
straints are not independent: Spherocylinders and cones
of the same area and volume also happen to have the
same spanning length to lowest order in the cone aperture
angle �.

Figure 4 shows a shape phase diagram under fixed
volume conditions. The FvK number was chosen to be
FIG. 4. Transition from spherocylinder to cone at fixed area S
and fixed volume V. The horizontal axis is the ratio of the capsid
volume to that of a reference icosahedral shell Vo. The vertical
axis is the dimensionless spontaneous curvature. The FvK num-
ber is fixed at 25 000. At the indicated transition point, the m=n
ratio equals 98=31 for the spherocylinder and 40=13 for the
cone; for larger (smaller) values of V=Vo, the m=n ratio at the
transition is smaller (larger). The dotted line shows the transition
line predicted by the LMN analytical theory.
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25 000. The vertical axis is again the dimensionless sponta-
neous curvature �, while the horizontal axis is the ratio
V=V0 of the shell volume to that of the reference icosahe-
dral shell. For each shape (spherocylinder and cone), we
determined the m=n value corresponding to a given V=V0

and calculated the energy as a function of �.
With increasing �, we now encounter a (discontinuous)

transition from the spherocylinder shape to the cone shape
for reduced volumes between 0.70 and 0.85. The maximum
near V=Vo � 0:84 appears be related to a buckling tran-
sition of the smaller endcap. LMN proposed an approxi-
mate analytical theory for the elastic energy of icosahedral
shells by adding the elastic energy of 12 disclination ‘‘de-
fects’’ to a ‘‘background’’ curvature energy. Their theory
can be adapted to the present case, and it indeed predicts a
transition from the spherocylinder to the cone shape at
fixed volume, although at somewhat lower values of the
spontaneous curvature (see dotted line in Fig. 4). The
predicted and calculated m=n ratios agree very well on
the other hand.

The driving mechanism of the transition is, according to
the theory, the reduction of the curvature energy cost of
equal-sized end caps by breakup into smaller and larger
sizes. A rather similar instability is encountered in the
phase diagram of closed lipid bilayers with fixed vesicle
area and enclosed volume (but zero FvK number) from a
prolate ellipsoidal shape to a pearlike shape [16]. This
instability is a precursor of the well-known budding tran-
sition of lipid vesicles [17].

Comparison of minimum energy shell shapes calculated
along the transition line of Fig. 4 with those observed for
HIV-1 capsids is illuminating. Micrographs of HIV-1 cores
resemble isometric cones with aperture angles � close to
that of a 5–7 cone [ arcsin�1=6� 
 19

�
] [6]. For reduced

volumes between 0.75 to 0.85, calculated m=n ratios along
the transition line ranged from 3.16 to 2.27 for the spher-
ocylinder and from 3.07 to 1.68 for the cone. For conical
HIV-1 capsids [6], the measured m=n range is from 1.5 to
2.0, and, for spherocylindrical capsids, the m=n ratio is
about 2. Next, the dimensionless spontaneous curvature is
of the order of 20 near the transition line—where HIV-1
capsids are most likely located—which would correspond
to a preferred radius (reciprocal spontaneous curvature) of
about 7 nm and, thereby, imply the radius of cylindrical
capsids. Actual CA cylinders, produced by self-assembly,
have a radius of about 20 nm [4].

The central result of this Letter is that unconstrained
energy minimization predicts a weakly first-order transi-
tion from spherical to spherocylindrical capsid shapes. It
does not yield any conditions under which the conical
shape of the lentiviruses constitute an energy minimum.
Rather, conical capsids are stabilized by imposing assem-
bly constraints on the capsid. Assembly constraints arise
physically from the size of the packaged genome and of the
enveloping membrane. Our finding indicates that the mo-
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lecular structure of the capsid proteins only partially ‘‘co-
des’’ for the capsid shape. Unlike the precisely patterned
icosahedral capsids of small viruses, the CA hexameric
ring architecture provides retroviruses with a flexible basic
unit that can be assembled into different structures depend-
ing on constraints. To test this concept as directly as
possible, one could carry out in vitro self-assembly experi-
ments involving CA/NC fusion proteins in which muta-
tions leading to larger spontaneous curvature (i.e., smaller
radii for the cylinders) should correlate with enhancement
of the population fraction of conical shells.
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