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Scaling of Geometric Phases Close to the Quantum Phase Transition in the XY Spin Chain
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We show that the geometric phase of the ground state in the XY model obeys scaling behavior in the
vicinity of a quantum phase transition. In particular we find that the geometric phase is nonanalytical and
its derivative with respect to the field strength diverges at the critical magnetic field. Furthermore, the
universality in the critical properties of the geometric phase in a family of models is verified. In addition,
since the quantum phase transition occurs at a level crossing or avoided level crossing and these level
structures can be captured by the Berry curvature, the established relation between the geometric phase
and quantum phase transitions is not a specific property of the XY model, but a very general result of
many-body systems.
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The phase factor of a wave function is the source of all
interference phenomena and one of most fundamental
concepts in quantum physics. Recent considerable interest
in this field is motivated by the pioneer work of Berry [1].
Berry discovered that a geometric phase (GP), in addition
to the usual dynamic phase, is accumulated on the wave
function of a quantum system, provided that the
Hamiltonian is cyclic and adiabatic. Since then, the adia-
batic GP and its generalizations [2,3] have found many
applications to broad fields [4,5], such as condensed matter
physics [6–8], atomic, molecular, and optical physics, and
quantum computation [9], etc.

Very recently, Carollo and Pachos demonstrated the
close relation between GPs and quantum criticality of
spin chains [10]. In particular, they showed that a non-
contractible GP difference between the ground state and
the first excited state exists in the XX model if and only if
the closed evolution path circulates a region of criticality.
Quantum phase transitions (QPTs) occur for a parameter
region where the energy levels of the ground state and the
excited state cross or have an avoided crossing, and is
certainly one of the major interests in condensed matter
physics [11–13] and quantum information [14]. Geometric
phase, as a measure of the curvature of Hilbert space, can
reflect the energy level structures and can capture certain
features of QPTs. However, at least two important prob-
lems need to be addressed. (i) The XY model is parame-
trized by � and � [see the definitions below Eq. (1)]. Two
distinct critical regions appear in parameter space: the
segment ��; �� � �0; �0; 1�� for the XX chain and the criti-
cal line �c � 1 for the whole family of the XY model
[11,15]. The GP difference between the ground state and
the first excited states calculated in Ref. [10] can be used as
a measure of the presence of the first critical region, but
whether this measure remains valid for the second critical
region is questionable. The second critical region is clearly
more interesting in the sense that second order quantum
phase transitions occur there. Whether one can reveal the
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latter critical region using GP is of significance. (ii) As also
noted in Ref. [10], a challenging but also important ques-
tion warranting further study is whether the typical features
of quantum criticality, such as the scaling feature, critical
exponents, and universality, etc. have relation to GPs in this
many-body system. Answering these questions is certainly
significant for a deeper understanding of QPTs, and also
from the perspective of GPs. As a consequence, further
results that bridge these two interesting areas of research
are of great relevance.

In this Letter, we use the XY spin chain as a helpful tool
to establish the connection between GPs and QPTs. Instead
of using the GP difference between the ground state and the
first excited state as a signature of quantum criticality, we
focus on the relation between GP of the ground state and
quantum criticality in the XY chain. We analyze GPs near
the critical point of the XY model and find that the GP is
nonanalytical and its derivative with respect to the field
strength � diverges at the critical line described by �c � 1.
In particular, the GP obeys scaling behavior in the vicinity
of a QPT. Furthermore, universality in the critical proper-
ties of GP for a family of models is verified. These results
show that the key ingredients of quantum criticality are
present in GPs of the ground state. In addition, we show
that the relation between GP and QPTs established here is
not model dependent, but is valid in a wide variety of
systems.

The system under consideration is a spin-1=2 XY chain,
which consists of N spins with nearest neighbor interac-
tions and an external magnetic field. The Hamiltonian of
the system is given by
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where M � �N � 1�=2 for N odd and ��j �� � x; y; x� are
the Pauli matrices for the jth spin. We assume periodic
boundary conditions for simplicity and choose N odd to
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FIG. 1 (color online). (a) Geometric phase 
g of the ground
state (b) and its derivative d
g=d� as a function of the
Hamiltonian parameters � and �. The lattice size N � 10 001.
There are clear anomalies for the derivative of geometric phase
along the critical line �c � 1.
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avoid the subtleties connected with boundary terms.
Nevertheless, the differences with other boundary condi-
tions and the even N case are the order to O�1=N� and then
negligible in the thermodynamic limit where QPTs occur
[14,15]. The parameter � is the intensity of the magnetic
field applied in the z direction, and � measures the anisot-
ropy in the in-plane interaction. This XY model encom-
passes two other well-known spin models: it turns into
transverse Ising chain for � � 1 and the XX (isotropic
XY) chain in a transverse field for � � 0.

As for quantum criticality in the XY model, we need to
distinguish two universality classes depending on the an-
isotropy �. The critical features are characterized in term
of a critical exponent � defined by �� j�� �cj�� with �
representing the correlation length. For any value of �,
quantum criticality occurs at a critical magnetic field �c �
1. For the interval 0< � � 1 the models belong to the
Ising universality class characterized by the critical expo-
nent � � 1, while for � � 0 the model belongs to the XX
universality class with � � 1=2 [11,15].

To investigate the GP in this system, we introduce a new
family of Hamiltonians that can be described by applying a
rotation of� around the z direction to each spin, i.e.,H� �

g�Hg
y
� with g� �

QM
j��M exp�i��zj=2� [10]. The critical

behavior is independent of � as the spectrum �k (see
below) of the system is � independent. This class of
models can be diagonalized by means of the Jordan-
Wigner transformation that maps spins to one-dimentional
spinless fermions with creation and annihilation operation
aj and ayj via the relations, aj � �

Q
l<j�

z
l ��

y
j [11,15].

Because of the (quasi) translational symmetry of the sys-
tem we may introduce Fourier transforms of the fermionic
operator described by dk �

1���
N
p
P
jaj exp��i2�jk=N� with

k � �M; . . . ;M. The HamiltonianH� can be diagonalized
by transforming the fermion operators in momentum space
and then using the Bogoliubov transformation. The result
is given by H �

P
k�k�c

y
k ck � 1�, where the energy spec-

trum �k �
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and

ck � dk cos	k2 � id
y
�ke

2i� sin	k2 with the angle 	k defined
by cos	k � �cos2�k

N � ��=�k.
The ground state jgi of H� is the vacuum of the fermi-

onic modes described by ckjgi � 0, and can be written as
jgi �

QM
k�1�cos	k2 j0ikj0i�k � ie

2i� sin	k2 j1ikj1i�k�, where
j0ik and j1ik are the vacuum and single excitation of the
kth mode, dk, respectively. The ground state is a tensor
product of states, each lying in the two-dimensional Hilbert
space spanned by j0ikj0i�k and j1ikj1i�k. The GP of the
ground state, accumulated by varying the angle� from 0 to
�, is described by 
g � �

i
M

R
�
0 hgj@�jgid� [10], and is

found to be


g �
�
M

XM
k�1

�1� cos	k�: (2)

The term 
k � ��1� cos	k� is a geometric phase for the
kth mode, and represents the area in the parameter space
07720
enclosed by the loop determined by �	k;��. To study the
quantum criticality, we are interested in the thermody-
namic limit when the spin lattice number N ! 1. In this
case the summation 1

M

PM
k�1 can be replaced by the integral

1
�

R
�
0 d’ with ’ � 2�k

N ; the GP in the thermodynamic limit
is given by


g �
Z �

0
�1� cos	’�d’; (3)

where cos	’ � �cos’� ��=�’ with the energy spectrum

�’ �
�������������������������������������������������
��� cos’�2 � �2sin2’

p
.

To demonstrate the relation between GP and quantum
phase transitions, we plot GP 
g [the same results were
derived in Ref. [10] ] and its derivative d
g=d� with re-
spect to the field strength � as a function of the Hamil-
tonian parameters � and � in Fig. 1. Two particular fea-
tures are notable: (i) the nonanalytic property of the GP
along the whole critical line �c � 1 in the XY model is
clearly shown by anomalies for the derivative of GP along
the same line; (ii) GP for the XX model under the thermo-
dynamic limit is very special in the sense that, instead of
using the GP difference between the ground state and the
excited phase as the signature of phase transition [10], a
noncontractible GP of the ground state itself also serves the
same role [16]. GP under the thermodynamic limit can be
obtained explicitly from Eq. (3) for � � 0 as 
g � 2��
2 arccos��� when � � 1 and 
g � 2� when � > 1. How-
ever, it appears from Eq. (2) that GP
g is always trivial for
strictly � � 0 and every finite lattice size M, since 	k � 0
or � for every k. The difference between the finite and
infinite lattice sizes can be understood from the two limits
N ! 1 and �!0. Assume ���with � an arbitrary small
but still finite value, then we can still find a solution ’0 (it
implies N!1) for cos’0���0 but �’0

��
�������������
1��2
p

� 0
for � � 1. Then a � geometric phase appears for such ’0

since 	’0
� �=2. Thus, a noncontractible GP of the

ground state itself is also a witness of QPT [16].
To further understand the relation between GP and

quantum criticality, we investigate the scaling behavior
of GPs by the finite size scaling approach [13]. We first
look at the Ising model. The derivatives d
g=d� for � � 1
6-2
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FIG. 2 (color online). The derivatives d
g=d� for the Ising
model (� � 1) as a function of the Hamiltonian parameter �.
The curves correspond to different lattice sizes N �
21; 101; 501; 1001;1. With increasing the system sizes, the
maximum becomes more pronounced. The inset shows that the
position of the maximum changes and tends as N�1:803 towards
the critical point �c � 1.
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and different lattice sizes are plotted in Fig. 2. There is no
real divergence for finite N, but the curves exhibit marked
anomalies and the height of which increases with lattice
size. The position �m of the peak can be regarded as a
pseudocritical point [13] which changes and tends as
N�1:803 towards the critical point and clearly approaches
�c as N ! 1. As shown in Fig. 3(a), the value of d
g=d�
at the point �m diverges logarithmically with increasing
lattice size as:

d
g
d�
j�m 	 �1 lnN � const; (4)

with �1 � 0:3121. On the other hand, as shown in
Fig. 3(b), the singular behavior of d
g=d� for the infinite
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FIG. 3 (color online). (a) The maximum value of the derivative
d
g=d� at the pseudocritical point �m as a function of lattice
sizes. The slope of the line is 0.3121 (0.5234) for � � 1 (� �
0:6). (b) The derivatives d
g=d� for the thermodynamic limit
logarithmically diverge on approaching the critical value. The
slope of the line is �0:3123 (� 0:5238) for � � 1 (� � 0:6).
The ratio between the two slopes in (b) and (a) for a fixed
parameter � is the critical exponent �. Here �� 1 is obtained for
both � � 0:6 and 1, as expected by the concept of universality in
the XY model.
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Ising chain can be analyzed in the vicinity of the quantum
criticality, and we find the asymptotic behavior as

d
g
d�
	 �2 lnj�� �cj � const; (5)

with �2 � �0:3123. According to the scaling ansatz in the
case of logarithmic divergence [13], the ratio j�2=�1j gives
the exponent � that governs the divergence of the correla-
tion length. Therefore, �� 1 is obtained in our numerical
calculation for the Ising chain, in agreement with the well-
known solution of the Ising model [15]. Furthermore, by
proper scaling and taking into account the distance of the
maximum of 
g from the critical point, it is possible to
make all the data for the value of F � 
1� exp�d
g=d��
d
g=d�j�m�� as a function of N1=���� �m� for different N
collapse onto a single curve [13,14]. The result for several
typical lattice sizes in the Ising model is shown in Fig. 4,
where we can also extract the critical exponent � � 1.

A cornerstone of QPTs is a universality principle in
which the critical behavior depends only on the dimension
of the system and the symmetry of the order parameter. The
XY model for the interval � 2 �0; 1� belongs to the same
universality class with critical exponent � � 1. To verify
the universality principle in this model, we check the
scaling behavior for different values of the parameter �.
The asymptotic behaviors are also described by Eqs. (4)
and (5). For instance, from Fig. 3 we get �1 	 0:5234 and
�2 	 �0:5238 for � � 0:6. Moreover, we also verify that,
by proper scaling, all data for different N but a specific �
can collapse onto a single curve. The data for � � 0:6 are
shown in Fig. 4. We can extract the same critical exponent
� � 1 from the data shown in both Figs. 3 and 4.

Comparing with the � � 0 case, the nature of the diver-
gence of d
g=d� at � � 0 belongs to a different universal-
ity class, and the scaling behavior of geometric phase can
be directly extracted from the explicit expression of GP

g � 2�� 2 arccos��� (� � 1) in the thermodynamic
limit. Since d
g=d� �

���
2
p
�1� ���1=2 (�! 1�), we can

infer the known result that the critical exponent � � 1=2
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FIG. 4 (color online). The value of F � 
1� exp�d
g=d��
d
g=d�j�m �� as a function N��� �m� for different lattice sizes
N � 51; 101; 501; 1001. All the data for a fixed parameter �
collapse on a single curve, as expected from the finite size
scaling ansatz.
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for the XX model. In addition, the dynamical behavior is
determined by �’!0 � ’

z
1� �’���z�, where z is the dy-
namical exponent in the thermodynamic limit. Then z � 1
for � 2 �0; 1� and z � 2 for � � 0 are found by the
expansion of �’ in the case ’! 0. So we have z� � 1,
which is indeed the case for the XY criticality [11].
Therefore, the above results clearly show that all the key
ingredients of the quantum criticality are present in the GPs
of the ground state in the XY model.

We now present that the relation between GPs and QPTs
addressed above is valid in a general case: quantum phase
transition occurs at level crossings or avoided level cross-
ings, and these kinds of level structures usually can be
captured by the GP of the ground state. Consider a generic
system described by the Hamiltonian H�
� with 
 a di-
mensionless coupling constant. For any reasonable 
, all
observable properties of the ground state of H will vary
smoothly as 
 is varied. However, there may be special
points denoted as 
c, where there is a nonanalyticity in
some property of the ground state at zero temperature, 
c is
identified as the position of a QPT. Nonanalytical behavior
generally occurs at level crossings or avoided level cross-
ings [11]. On the other hand, we also consider GPs in a
generic many-body system where the Hamiltonian can be
changed by varying the parameters R on which it depends.
The state j �t�i of the system evolves according to
Schrodinger equation H�R�t��j �t�i � i@@tj �t�i. At any
instant, the natural basis consists of the eigenstates jn�R�i
of H�R� for R � R�t�, that satisfy H�R�jn�R�i �
En�R�jn�R�i with energy En�R� �n � 1; 2; 3; . . .�. Berry
showed that the GP for a specific eigenstate, such as the
ground state (jgi � j1i) of a many-body system we
concern here, adiabatically undergoing a closed path in
parameter space denoted by C, is given by 
g�C� �
�
RR
CVg�R� �dS, where dS denotes area element in R

space and Vg�R� is the Berry curvature given by [1]

Vg�R� � Im
X
n�g

hgjrRHjnihnjrRHjgi

�En � Eg�
2 : (6)

The energy denominators in Eq. (6) show that the Berry
curvature usually diverges at the point of parameter space
where energy levels are cross and may have maximum
values at avoided level crossings. Thus level crossings or
avoided level crossings, the two specific level structures
related to QPTs, are reflected in the geometry of the Hilbert
space of the system and can be captured by GPs of the
ground state. ‘‘ Moreover, GP and its derivative basically
can be written as a function of the derivatives of the ground
state energy with respect to the field strength [17]. In this
sense it is natural that geometric phase obeys scaling
behavior in the vicinity of a QPT. So the connection
demonstrated herein is in fact a very general result and
not a specific property of the XY model.

In summary, we established the connection between
geometric phase of the ground state and QPTs in a generic
many-body system. As a typical example, we show in
07720
detail that all the key ingredients of quantum criticality,
such as scaling features, critical exponents, and universal-
ity, etc. are present in the GPs in the XY spin chain.
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for helpful discussions and P. Berman for his critical
reading of this Letter. This work was supported by NSF
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Note added.—After this Letter was completed, I got a
manuscript [16] where a general connection between Berry
phases, topology, and QPTs was rigorously established: a
nontrivial and noncontractible GP of the ground state is a
signature of QPTs.
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