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We discuss collective spin-wave excitations in triplet superconductors with an easy axis anisotropy for
the order parameter. Using a microscopic model for interacting electrons, we estimate the frequency of
such excitations in Bechgaard salts and ruthenate superconductors to be 1 and 20 GHz, respectively. We
introduce an effective bosonic model to describe spin-wave excitations and calculate their contribution to
the nuclear spin-lattice relaxation rate. We find that, in the experimentally relevant regime of tempera-
tures, this mechanism leads to the power law scaling of 1/T; with temperature. For two- and three-
dimensional systems, the scaling exponents are 3 and 5, respectively. We discuss experimental manifes-
tations of the spin-wave mechanism of the nuclear spin-lattice relaxation.
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Nuclear magnetic resonance (NMR) is a powerful tool
for analyzing ordered electron states in solids. NMR analy-
sis has been successfully applied to study magnetic insu-
lators (see, e.g., [1], and references therein) as well as
several classes of unconventional superconductors, includ-
ing high 7, cuprates [2], heavy fermion materials [3],
ruthenates [4], and organic superconductors [5]. In particu-
lar, NMR experiments have been useful for analyzing the
symmetry of the superconducting order parameter [6] and
for clarifying the structure of the phase diagram in systems
with competing orders [7].

A common feature of the NMR experiments in certain
families of triplet superconductors (TSC) is the power law
temperature dependence of the nuclear spin-lattice relaxa-
tion rate (NRR). Bechgaard salts [8], ruthenates [4], and
heavy fermion materials [9] showed 1/T; ~ T3 at low
temperatures and for small magnetic fields. Such behavior
has usually been interpreted as a signature of nodes in the
quasiparticle gap on the Fermi surface. Indeed, point and
line nodes should lead to 7° and T3 scaling of 1/T,,
respectively. In several cases, however, we have reason to
doubt the presence of nodes in the TSC order parameter.
For example, in quasi-1D Bechgaard salts, the natural
order parameter has different signs on the two sheets of
the Fermi surface and no nodal points [10]. Also in ruth-
enates, the order parameter that is consistent with sponta-
neous time reversal breaking [11] and the quasi-2D nature
of these materials corresponds to a finite quasiparticle gap
on the entire Fermi surface [12], although the gap can be
strongly inhibited on « and 8 Fermi surfaces relative to the
v Fermi surface [13], possibly resulting in node-like tem-
perature dependencies of different physical quantities [14].
In this Letter, we consider a mechanism of the nuclear
spin-lattice relaxation that is not due to Bogoliubov quasi-
particles but due to collective spin-wave (SW) excitations
of the TSC order parameter. We demonstrate that, in the
experimentally relevant regime of temperatures, this
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mechanism also leads to the power law scaling of 1/T)
with temperature.

Our starting point is the Moriya relation [15] for the
NRR
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Here A describes the strength of hyperfine interactions
between nuclear spins and conduction electrons, gy is a
gyromagnetic ratio of the nucleus, g.; is an effective
gyromagnetic ratio of conducting electrons, pp is a Bohr
magneton, and x'| (g, wy) is the imaginary part of the
transverse (i.e., perpendicular to the magnetic field) elec-
tron spin susceptibility taken at the nuclear Larmor fre-
quency wy. In the case of a perfect spin SU(2) symmetry,
linearly dispersing SW excitations exist down to arbitrar-
ily small energies. In real materials, there is always spin
anisotropy which gives rise to a finite gap for spin excita-
tions, w,. Below, we estimate the value of wg to be tens of
millidegrees Kelvin for Bechgaard salts and hundreds of
millidegrees Kelvin for the ruthenates. This is much larger
than the nuclear Larmor frequency w, but smaller than
the typical temperature used in experiments. When w, is
much larger than w, creation and annihilation of individ-
ual SWs does not affect y”(wy). However, there is a
contribution due to the scattering of thermally excited
SW excitations. Let p(E) be the density of states for
SW excitations and n(E) = (exp(E/kzT) — 1)~! be the
Bose distribution function. From the second order per-
turbation theory, we have x” (wy) ~ [ p(E)p(E + wy) X
[n(E) — n(E + wy)]dE. The characteristic energy scale
in this integral is set by the temperature 7. Since T >
wo, we can assume linear dispersion of SW excitations
and take p(E) ~ E?"!, where d is the number of spatial
dimensions. Using wy <7, we have x’(wy)~
wy [E***(—3n/dE)dE ~ T?*~2. Combining this result
with the Moriya relation (1), we obtain 1/, ~ T?¢~ ! This
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simple analysis does not take into account coherence fac-
tors in the expression for y”. Below, we demonstrate that
coherence factors do not modify the scaling exponent of
the NRR in TSC [16]. This is in contrast to antiferromag-
netic (AF) systems that also have linearly spin waves but in
which coherence factors contribute an additional 1/7?
factor to 1/T [1].

For a detailed analysis of the NRR, we introduce an
effective model that captures the essence of triplet super-
conductivity and allows us to analyze collective excita-
tions. A simple picture of the TSC state corresponds to
binding electrons into Cooper pairs with spin one and
momentum zero and Bose condensing such pairs. In an
effective bosonic model, one can neglect details of the
orbital nature of Cooper pairs and consider them as “‘ele-
mentary’’ particles. Interactions are important for the cor-
rect description of collective excitations; thus, we are led to
the Hubbard-type model for spin one bosons [17]

= —tz (af a;y + a olig) — 5”261,0010
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Here a;rg creates a boson on site i with spin o = {—1, 0, 1}.

Operators n; and 5’ describe the number of atoms and the
total spin on site i: n; = Z(, gy 9,» = o, X
T,m/aw/, where TW« are the usual spin matrices for spin
one particles. The first term in the Hamiltonian (2) de-
scribes tunneling of Cooper pairs between neighboring
lattice sites i and j. An important aspect of the model (2)
is the presence of two types of interaction terms. The third
term in (2) depends only on the number of particles on each
site and is the same as for spinless bosons. The fourth term
in (2) gives spin dependence to the interaction [without
breaking the spin SU(2) symmetry] and is a novel feature
of spinful Cooper pairs. The sign of U, determines the
difference between unitary (U, > 0) and nonunitary (U, <
0) triplet superconductors. In the unitary case, Cooper pairs
do not have an expectation value of the spin, and the triplet
superconducting order parameter, given by the so-called d
vector [see Eq. (8) for the definition of the d vector], fac-
torizes as d = e®ii, where ii is a real vector. It is generally
believed that triplet pairing between fermions leads to
unitary Cooper pairs [12]. Thus, from now on we assume
that U, is positive. For concreteness, we consider a
d-dimensional (d = 2, 3) hypercubic lattice. Our results,
however, do not depend on the precise lattice structure. The
second term in Eq. (2) introduces easy axis anisotropy for
the order parameter by making the condensation of a to be
energetically favorable. A state with finite (a,) corresponds
to the unitary state of Cooper pairs with the d vector
pointing along the z axis.

In the mean field approximation, we take (a,) = Wy,
with |Wy|?> = (u + zt + 8r)/U, and z = 2d being the
coordination number. Without loss of generality, we can

take W to be real. Fluctuations in the phase of a corre-
spond to the density (Bogoliubov) mode. To find SW ex-
citations, we need to consider a. operators. In the Hamil-
tonian (2), we replace a by its expectation value, take the
terms quadratic in a.., and perform the Bogoliubov rota-
= (VN Sag e ag, = viyp, +uy!
a_p_ = ukngr + Uk?’f/;f- Here N is the total number of
lattice sites, u7 + v = (& + A)/Ey, 2uv, = —A/Ey,

= —ZIZ _,cos(k,b) + UyW3 — . In these equa-
t10ns b is the lattice constant and A = U,W3. We obtain
the diagonalized spin-wave  Hamiltonian JH, =
ZkEk(7k+ Yer T vl vio), with E} = €2 + 2A¢,. Oper-
ators y 1+ create SW excitations with §;, = *1. In the long
wavelength limit, we find E2 = o} + v2k?, with 0} =
8r* + 2A8r and v3 = 21U, V3a?

We need to calculate the electron spin susceptibility in

the direction perpendicular to the applied magnetic field.
Let 6 be the angle between the z axis (i.e., the direction of

tion a;,

the d vector) and the direction of the magnetic field (see
Fig. 1). We have

X1 = sin?0y,. + (1 + cos?0) xy,. 3)

Itis easy to see that y,, and x,, are given by the correlation
function of SWs
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where we introduced the Nambu-Gorkov—type nota-
tions DX2(q, w) = [dte’ O(=1 TV ()W) (0)), with

{’)/q-%—’ Y—q—} , and Uaﬂ(kr k) - 6aﬁ(vkvk’ -
ukukr) + (1 = Sap) vy — viuy).

Note that there is a qualitative difference in calculating
Xz and Y.,. A nonuniform magnetic field in the z direction
can scatter the existing thermally excited SWs. Thus, we
find a finite imaginary part of y,, at small frequencies by
considering the quadratic Bogoliubov Hamiltonian. We
obtain

FIG. 1. Orientation of coordinate axes, H, and the d vector.
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By contrast, a nonuniform magnetic field in the x direction
can only create or annihilate SW excitations. However,
energies of these excitations cannot be smaller than w.
Hence, if we limit ourselves to the quadratic Hamiltonian
for SWs, we find that . is identically zero for frequencies
smaller than w, at any temperature. To get finite y/. at
small frequencies, we need to consider interactions be-
tween SWs. Taking quartic terms in Eq. (2) and using
definitions of SW operators, we obtain the interaction
terms between SW excitations. These can be used to cal-
culate self-energies for SW excitations as shown in Fig. 2.
We find [18]

(g, wn) = ( V)2 2N (U, + 3U,)2bH 4%y
Xi(q, oy 8etft LB ¥ 0 AAT 0 2 (27T)d
dk, E}, + E}, + E;
2~k S (n(Ey) + 1)

(2m) EnEnEs
X (n(Epp) + Dn(E3)8(Ey + Eyy — Eps),

(6)

where 123 = 121 + Igz. We emphasize that Egs. (5) and (6)
apply only in the low frequency limit wy < wy which is
relevant for experiments.

Expressions (5) and (6) show that in Eq. (3) contribu-
tions to 1/7; due to x/. and y/, scale as 7?¢~! and 73972,
respectively. For two- and three-dimensional systems, the
X2 contribution dominates (one can check that this con-
clusion remains when we include prefactors). At first
glance, this result appears surprising. First, the real static
susceptibility is finite in the direction perpendicular to the
d vector but is zero along it. Second, in the case of full
SO(3) symmetry, creation and annihilation of individual
SWs contribute to xY, and xY, at small frequencies but
have no effect on y/.. A crucial part of our analysis is the
existence of a spin gap w, which is much larger than the
nuclear Larmor frequency . In this case, y"(w,) does
not have contributions due to creation or annihilation of
individual SWs. For x”,, we take thermally excited SWs
and scatter them by the magnetic field. For yZ., we also
need thermally excited SWs but, in addition, we must rely
on interactions between them. SWs are pseudo Goldstone
modes. At low energies, interactions between them are

FIG. 2. Second order self-energy diagrams that give rise to
scattering of spin waves. For details, see [18].

suppressed. This gives rise to the smallness of y, relative

to x.

To summarize, for two- and three-dimensional systems,
we find that, as long as 6 is not anomalously small, the SW
contribution to the NRR is given by

bd

v 4 2|BZd o721 (7)

L e
T sin®6|A|* g%,
Here S, is the surface area of a unit sphere, and B,, are
Bernoulli numbers, B, = 1/6, B, = —1/30. We remind
the readers that Eq. (7) applies when T > w,. At low
temperatures, 7 << w,, we expect 1/T to start decreasing
exponentially, reflecting the exponential suppression in the
number of thermally excited SW excitations. Equation (7)
also predicts that the NRR should be very sensitive to the
direction of the magnetic field. We note, however, that this
argument is valid only for magnetic fields that are smaller
than the so-called spin-flop magnetic field Hy,,. In mag-

netic fields larger than Hy,p, the order parameter d will
always be perpendicular to the direction of the applied field
[18].

It is useful to compare contributions to 1/7, from
magnons to the one from quasiparticles. For concreteness,
we consider a quasi-2D system with the TSC order pa-

rameter d = Aozk,/kp that has a line of nodes along the 2
axis. The quasiparticle contribution to the NMR relaxa-
tion rate in such a state [19] is given by 1/Tg, =

A g3 b*m>T3 /6A3. For comparison, we take Eq. (7)
and use the BCS expressions for the velocity of SW
excitations (see below). We find Tyyae/T1qp = A}/ €7
In a typical superconductor, the value of the quasiparticle
gap is much smaller than the electron Fermi energy.
Therefore, when we have both gapless quasiparticles and
SWs, the quasiparticle contribution will strongly dominate.
Only when the quasiparticles are fully gapped out do the
magnons provide the dominant contribution to 1/7}.

Now we outline the key steps of the analysis that al-
lowed us to estimate the characteristic frequency of SW
excitations in TSC. We consider a phenomenological BCS-
type model for interacting electrons

H = Zekc}:”ck,, - ZVJI(Q)dI(CI)da(CI),

®)

dT(q) 5 ZV (Q)fkck+q/2a(lo-20- )a/}c k+q/2.8°
koz,B

Here d,(q) are Fourier components of the TSC order
parameter in the direction a (a = x, y, 2), f « 1S an orbital
wave function [e.g., f = sgn(k) [10]], and ck(r are electron
creation operators. Parameters V,, describe electron inter-
actions in the p-wave channel. A homogeneous unitary
triplet superconducting state is the ground state of the
Hamiltonian (8). Assuming easy axis anisotropy with V< >
V¥ =V’ we find (d,(qg = 0)) = Ay and (d,) = (d,) = 0.
To find SW excitations, we consider fluctuations of the
TSC order parameter d,(r,t) = di(r, t). Integrating out
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fermions gives an effective action for SW excitations [18]
Seilds} = [,q Di(q, @)ld,(g, )I?, where g and w are the
wave vector and the real frequency of the SW, respectively.
For the spherically symmetric Fermi surface in d dimen-
sions, we have D,(w, ) = I Ny(w} — » + v2¢*). Here
Ny is the density of states at the Fermi energy, vi =
v%/d, vy is the Fermi velocity, and

wj = 4NN WV = v, 9

Zeros of D, correspond to SW excitations. In the case of
spin symmetric interactions, SWs are Goldstone modes
and are gapless. They have linear dispersion with the
velocity v,. In the case of the easy axis anisotropy, SWs
have a gap w,.

As a concrete example, we consider the TSC state in
Bechgaard salts. We assume that the spin anisotropic
part of the interaction in this phase is the same as in
the antiferromagnetic state of this material AJH ,; =
8J.> (ij»S;S5. Here (i) corresponds to the nearest neighbor
sites and the spin z axis points along the crystallographic b’
axis. The antiferromagnetic resonance experiments [20]
suggest 0J, = 0.01 K. We can express AH i in the
form similar to Eq. (8) with —6V:=6V* = oV’ =
%5J2v0. Here v, is the volume of the unit cell. Assuming
that the anisotropic term is a small correction to the spin
symmetric interaction, the total interaction entering Eq. (8)
is V¢ =V + 6V The value of V can be estimated from
the BCS equation for the transition temperature 7, =
1.14wpose NV, Here wpog is the characteristic fre-
quency of bosons providing electron pairing. Combining
all expressions, we find

Wy

A, (10)

1.14
2(8J.Novo)'/? 10g<$).

Cc

Taking 6J, =0.01 K, Ny = 2 X 10** erg” ! cm ™3, wpog =
1000 K, 7T, = 1.4 K, Ay = 2.5 K, and v, = 360 A3, we
obtain w( around 1 GHz. There is a simple qualitative
argument that supports our result that w, for Bechgaard
salts lies in the gigahertz range. This argument relies on a
comparison of SW resonances in the antiferromagnetic and
superconducting states of these materials. In quasi-1D
systems, microscopic descriptions of the two states are
similar, and BCS-type models and our analysis of SW
excitations can be used in the antiferromagnetic phase as
well. From the discussion above, we expect that the ratio of
SW energies in the two phases is approximately propor-
tional to the ratio of AF and TSC transition temperatures,
i.e., around 10. In the AF phase, the SW resonance fre-
quency was measured in the tens of gigahertz range [20].
Hence, in the superconducting state, it should be a factor of
10 smaller, which brings us into the gigahertz range.
Similar analysis can be done for the TSC state in
Sr,RuQ,. Sigrist and co-workers (see, e.g., Ref. [21])
showed that spin-orbit coupling in these materials leads to
a difference in the transition temperature of various order

parameters of the order of 2%. From the BCS expression
for T.., we have 8T,/T. = 8V /N,V?. Taking A, = 2.6 K,
from Eq. (9) we estimate w to be around 20 GHz.

In summary, we studied spin-wave excitations in triplet
superconductors with the easy axis spin anisotropy. We
showed that, in the experimentally relevant regime of
temperatures, 1/7, has a power law scaling with tempera-
ture, including the 73 dependence for two-dimensional
systems. We showed that the spin-wave mechanism pre-
dicts a dramatic decrease of 1/T; for temperatures lower
than the energy of spin-wave excitations and leads to
dependence of 1/T; on the direction of the applied mag-
netic field.
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