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Direct Observation of the Aharonov-Casher Phase
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H. Buhmann,1 and L. W. Molenkamp1

1Physikalisches Institut (EP 3), Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
2Department of Physics, Texas A&M University, College Station, Texas 77843-4242, USA

3Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, USA
(Received 17 August 2005; published 24 February 2006)
0031-9007=
Ring structures fabricated from HgTe=HgCdTe quantum wells have been used to study Aharonov-
Bohm type conductance oscillations as a function of Rashba spin-orbit splitting strength. We observe
nonmonotonic phase changes indicating that an additional phase factor modifies the electron wave
function. We associate these observations with the Aharonov-Casher effect. This is confirmed by
comparison with numerical calculations of the magnetoconductance for a multichannel ring structure
within the Landauer-Büttiker formalism.
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In the early 1980s it was shown that a quantum me-
chanical system acquires a geometric phase for a cyclic
motion in parameter space. This geometric phase under
adiabatic motion is called the Berry phase [1], while its
later generalization to include nonadiabatic motion is
known as the Aharonov-Anandan phase [2]. A manifesta-
tion of the Berry phase is the well-known Aharonov-Bohm
(AB) phase [3] of an electrical charge which cycles around
a magnetic flux. Aside from the AB effect, the first experi-
mental observation of the Berry phase was reported in 1986
for photons in a wound optical fiber [4]. Another important
Berry phase effect is the Aharonov-Casher (AC) effect [5],
which has been proposed to occur when an electron prop-
agates in a ring structure in an external magnetic field
perpendicular to the ring plane in the presence of spin orbit
(SO) interaction [6].

This AC effect can be seen when two partial waves move
around the ring in different directions. They will acquire a
phase difference which depends on the spin orientation
with respect to the total magnetic field ~Btot � ~B� ~Beff

and the path of each partial wave. ~Beff is the effective field
induced by the SO interaction. The phase difference is
approximately [6]
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where s �" and # denote parallel and antiparallel orienta-
tion to ~Btot, b � �1 for s �" and b � �1 for s �# , and
the superscript ���� denotes a clockwise (counterclock-
wise) evolution, respectively. In the above equations, � is
the SO parameter, r the ring radius, m� the effective
electron mass, and � the angle between the external ( ~B)
and the total magnetic field ~Btot. For both equations, the
first term on the right-hand side can be identified with the
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AB phase and the second term of Eq. (1) with the geomet-
ric Berry or Aharonov-Anandan phase. The second term in
Eq. (2) represents the dynamic part of the AC phase, i.e.,
the phase of a particle with a magnetic moment that moves
around an electric field. From the expressions above, it can
be seen that an increase of � will lead to a phase change
that increases continuously, whereas the contribution due
to the geometric phase results in a phase shift limited to
�’geom � �.

Both the AC phase [7] and the geometric phase [8,9] de-
pend on the SO interaction. As a result, one expects a
complicated nonmonotonic interference pattern as a func-
tion of magnetic field and SO interaction strength. So far,
to our knowledge, apart from the AB effect no direct ob-
servation of phase-related effects in solid state systems has
been reported. Recently, side bands in the Fourier trans-
form of AB oscillations have been interpreted as an indi-
cation for the existence of a Berry phase [10–12]. How-
ever, these interpretations have been questioned [13–15].
Spin interference signals in square loop arrays have been
reported recently by Koga et al. [16] but their direct
relationship to the AC effect is not easily established. It
thus would be important to observe these phase-related
effects directly.

Here, we present experimental results on the magneto-
transport properties of a HgTe ring structure. The strength
of the SO interaction is controlled via a gate electrode by
varying the asymmetry of the quantum well structure. We
observe systematic variations in the conductance of the
device as a function of both external B field and gate
voltage. The gate-voltage dependent oscillations clearly
exhibit a nonmonotonic phase change, which is related to
the dynamic part of the AC phase. This interpretation is
confirmed by numerical calculations for multichannel
rings within the Landauer-Büttiker formalism. The effects
discussed here are observed in several samples of various
dimensions. For clarity, we present only data obtained from
one sample.
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The samples are fabricated on type-III HgTe=HgCdTe
quantum well (QW) structures with electron mobilities of
the order of 105 cm2=�V s�. This narrow-gap material ex-
hibits a strong Rashba spin-orbit (SO) splitting [17], which
can be modified over a wide range via an externally applied
gate voltage [18,19]. The n-type QWs are symmetrically
modulation doped and have been grown by molecular
beam epitaxy [18,20]. The width of the HgTe-QW is
12 nm. The device structure is fabricated by optical and
e-beam lithography and wet chemical etching [21]. A
picture of the sample is shown in Fig. 1. The width of the
leads in each arm of the ring is 300 nm and the ring radius
is 1 �m. Directly attached to the ring is a Hall bar. Both
components, ring and Hall bar, are covered by an insulator
(Si3N4) and a metal gate electrode (Au). Because of these
layers, the structure becomes asymmetric and a nonzero
Rashba splitting is found for VGate � 0. For all measure-
ments, the samples were mounted in a 3He=4He dilution
cryostat with a base temperature of �20 mK.

An applied gate voltage leads to a change in carrier
concentration, electron mobility, and the Rashba SO split-
ting energy (�R). These sample parameters were deduced
directly from magnetotransport measurements of the at-
tached Hall bar structure (see Fig. 1). The Rashba SO
splitting energy of the presented sample could be varied
from zero up to �R 	 6 meV. These values are obtained
by analyzing the Fourier transform of the Shubnikov–de
Haas (SdH) oscillations. The Rashba splitting energy de-
pends linearly on the applied gate voltage for �4 V �
VGate � 0 V. In this range the carrier concentration
changes linearly between 1:85
 1012 and 2:21

1012 cm�2. An estimation for the symmetry point, �R �
0, yields VGate 	 ��2:57� 0:02� V [Fig. 1(a)]. The AB
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FIG. 1. Microscope image of the sample layout without top
gate electrode. The average ring radius is 1 �m and the width of
each arm is 300 nm. Inset (a): the symmetry point is estimated
from the subband population differences as a function of the
applied gate voltage, i.e., VGate 	 �2:57 V. Inset (b) shows the
conductance oscillations at VGate � �2:57 V. The period, �B �
1:3 mT, is consistent with the ring radius.
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oscillations for this gate voltage are displayed in Fig. 1(b).
The period of 1.3 mT is consistent with the ring radius of
r � 1 �m. Figure 2 shows a more detailed gate-voltage
dependent magnetoconductance. For the displayed gate-
voltage range, the change of carrier density is negligible.
Here, two regions can clearly be distinguished. Near the
symmetry point, there is no noticeable influence of the SO
coupling on the position of the conductance oscillations
[Fig. 3(a)]. The symmetry point of VGate � �2:568 V has
been determined from Fig. 2.

For increasing �R the situation is drastically modified.
Over a large range in gate voltage which corresponds to �R
from zero up to �150 �eV, the AB oscillations show
phase shifts and bifurcations with increasing gate voltage
(Fig. 2). A repetitive sequence of maxima and minima can
be observed. Qualitatively, the observed conductance fluc-
tuations represent the expected interference pattern due to
phase differences for different spin orientation of the par-
tial waves propagating around the ring [cf. Eqs. (1) and
(2)]. The phase differences are caused by the change in
strength of the SO coupling and thus the orientation of the
total magnetic field with respect to the ring plane. The
oscillations are symmetric in magnetic field and with re-
spect to the applied gate voltage around the symmetry
value of VGate � �2:568 V. This behavior is expected
for the SO coupling controlled dynamic part of the AC
phase. In contrast, the geometric phase contribution to
Eq. (1) varies only slowly with increasing SO interaction,
so that one does not anticipate a discernible signature of
this effect for the gate-voltage range studied here.

To verify that the experimental data represent a direct
observation of the Aharonov-Casher phase in multichannel
rings, we compare them to numerical calculations within
the Landauer-Büttiker (LB) formalism [22]. The effective
mass Hamiltonian for a two-dimensional ring with Rashba
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FIG. 2 (color online). Color plot of the conductance fluctua-
tions, maxima (yellow) and minima (blue), as a function of
magnetic field and gate voltage. The dashed line indicates �R �
0 which can be located at VGate � �2:568 V, based on the
mirror symmetry of the conductance around this line.
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FIG. 3 (color online). (a) Near the symmetry point (VGate �
�2:568 V) the interference pattern is unperturbed by the SO
interaction. (b) The theoretical calculations for a 6-channel ring
show consistent results for the corresponding range of �R.
Yellow and blue correspond to conductance maxima and min-
ima, respectively.
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SO interaction and in a perpendicular magnetic field, Bz, is
given by:

Ĥ r �
�̂2

2m�
�
�
@
��̂
 �̂�z � ĤZ � Ĥconf�r� � Ĥdis; (3)

where �̂ � p̂� eÂ and ĤZ �
1
2 g�B�zBz. The first term

is the kinetic energy contribution, the second term corre-
sponds to the spin-orbit Rashba interactions, the third is the
Zeeman interaction, and Ĥconf and Ĥdis are the confine-
ment and disorder components of the Hamiltonian, respec-
tively. For an ideal 1D ring, the conductance in the
magnetic and Rashba fields can be found analytically
[6,23–25]. However, our actual experimental structures
are not 1D and multichannel effects have to be taken into
account. Here, we use the concentric tight-binding (TB)
approximation to model the multichannel rings extending
the calculations in Ref. [22]. Within this approximation,
the Hamiltonian, which is not only including the Rashba
interactions but also the effect of magnetic field, becomes:
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where n and m designate the sites in the azimuthal (�) and
radial directions (r), respectively; �nm � 4t�0 �
1
2 g�z�BBz is the on-site energy where t � @

2=�2m�a2�

and a is the lattice constant along the radial direction.
tn;n�1;m
� and tm;m�1;n

r are matrices describing generalized
(with the inclusion of spin-orbit interactions) the nearest
neighbor hopping energies in azimuthal and radial direc-
tions, respectively [22]. In the Landau gauge, the hopping
parameter in azimuthal direction is modified through the
term ei�rm=�0 , where � � �Bza, �0 � h=e, and rm �
r1 � �m� 1�a is the radius of a ring with m modes in
radial direction. The innermost ring radius corresponds to
m � 1 while m � M stands for the outermost ring radius.
We also assume that the lattice spacing along the azimuthal
direction in the outermost ring is the same as that in the
radial direction. The ring is attached to two semi-infinite,
paramagnetic leads that constitute reservoirs of electrons at
chemical potentials �1 and �2. The influence of semi-
infinite leads in the mesoscopic regime is taken into ac-
count through the self-energy term and the total charge
conductance is calculated as outlined in Ref. [22].

We use an effective electron mass of m� � 0:031m0 and
effective g factor jgj � 20 in accordance with n-doped
HgTe-QW parameters [26]. To verify the experimentally
determined zero value of SO interaction at VGate��R �
0� � �2:568 V we have calculated the conductance of a
07680
6-channel ring within the LB formalism. Figure 3(b) shows
the calculated conductance as a function of Rashba energy
and magnetic field. We have found that for small Rashba
energies, less than 5 �eV, the interference pattern is al-
most unperturbed by SO interactions and displays the
multichannel Aharonov-Bohm oscillations, similar to the
experimental data [see Fig. 3(a)]. Furthermore, a compari-
son of the experimental and the theoretical data leads to the
conclusion that a change in the gate voltage of 10 mV leads
to a change of 35 �eV in the Rashba energy, which is in
good agreement with the results obtained from the
Shubnikov–de Haas oscillations.

To verify the existence of AC phase, we performed the
conductance calculations for much larger Rashba cou-
plings. In the case of a strictly 1D ring, the appearance of
the AC phase leads to periodic oscillations in conductance
as a function of the Rashba energy [24,25]. In contrast, the
theoretically predicted interference pattern for conduc-
tance is more complex for a multichannel ring. In this
case, the repetitive conductance minima and maxima
move diagonally as a function of SO coupling, as can be
seen in the theoretical simulation [Fig. 4(b)]. For this
calculation a ring with six channels was assumed (in
agreement with an experimental estimate), where only
one channel is conducting coherently. This latter assump-
4-3
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FIG. 4 (color online). When the SO interaction is modified via
the gate voltage, a shift of the conductance maxima (yellow) can
be observed due to the Aharonov-Casher phase (a). In (b), the
theoretical results for the conductance in a 6-channel ring as a
function of the Rashba energy and Bext are shown. The scaling of
the y axis allows a direct comparison of the experimental and
theoretical data.
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tion is corroborated by the experimental results. For more
than one coherent channel, the interference pattern would
be much more complex and smeared out. The distinct
interference pattern is a strong indication that there is
only one coherent conducting channel, presumably be-
cause of impurities and imperfections in the ring geometry.
Additional incoherent conductance paths contribute
mainly to the nonoscillating background, so that their
effect on the interference pattern is negligible. The theo-
retical model reproduces the main features of experimental
data, i.e., the diagonal position of conductance maxima and
minima [Fig. 4(a)]. A more quantitative comparison of the
experimental and theoretical data is difficult and should
take into account incoherence effects as well as the change
in width of the ring which is cumbersome to estimate.

In conclusion, we have measured the transport proper-
ties of HgTe ring structures with a continuously adjustable
SO interaction. In these structures, the AB-type magneto-
conductance oscillations exhibit significant phase changes
when the Rashba SO splitting energy is varied. A numeri-
cal analysis shows that these fluctuations are a direct con-
sequence of an Aharonov-Casher phase contribution to the
electronic wave function. Thus, the experimental results
07680
provide the first direct observation of the Aharonov-Casher
effect.
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