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Pattern Formation and Glassy Phase in the �4 Theory with a Screened Electrostatic Repulsion
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We study analytically the structural properties of a system with a short-range attraction and a competing
long-range screened repulsion. This model contains the essential features of the effective interaction
potential among charged colloids in polymeric solutions and provides novel insights on the equilibrium
phase diagram of these systems. Within the self-consistent Hartree approximation and by using a replica
approach, we show that varying the parameters of the repulsive potential and the temperature yields a
phase coexistence, a lamellar, and a glassy phase. Our results strongly suggest that the cluster phase
observed in charged colloids might be the signature of an underlying equilibrium lamellar phase, hidden
on experimental time scales.
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Introduction.—In the last few years there has been much
interest in the role of the interparticle potential on control-
ling the structure and the dynamics of colloidal suspen-
sions [1–5] due to the potential application of these
systems for designing new materials with a wide range of
viscoelastic properties. In charged colloidal systems the
effective interaction can be described in terms of a short-
range attraction and a long-range screened electrostatic
repulsion [well approximated by the Derjaguin-Landau-
Verweg-Overbeek interaction potential (DLVO) [6]]. The
competition between attractive and repulsive interactions
on different length scales stabilizes the formation of ag-
gregates of an optimal size (cluster phase) characterized by
a peak of the structure factor around a typical wave vector,
km, that has been experimentally [1,2] and numerically
[3–5] observed. By an appropriate tuning of the control
parameters, the system progressively evolves toward an
arrested gel-like disordered state (colloidal gelation).
Although intensely studied both experimentally and nu-
merically, a theoretical understanding of the mechanisms
underlying these phenomena is still lacking and many gaps
remain in our knowledge of the equilibrium phase diagram
of these systems.

In this Letter we study analytically a �4 model with
competition between a short-range attraction, described by
the Ginzburg-Landau Hamiltonian, and a long-range
screened repulsion, described by a Yukawa potential.
Albeit schematically, this model contains the essential
features of the effective interaction among charged colloids
and sheds new light on the structural properties of these
systems. Depending on the control parameters, there is a
region of the phase diagram where usual phase separation
takes place. Conversely, as the screening length and/or the
strength of the repulsion exceeds a threshold value, phase
separation is prevented. In this case, at moderately high
temperature the competition between attraction and repul-
sion has the effect of producing modulated structures,
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which in the terminology of particle systems, correspond
to the cluster phase. These modulated structures are the
precursors of a first-order transition towards an equilibrium
lamellar phase found at lower temperatures. By using a
replica approach for systems without quenched disorder
[7], and employing the self-consistent screening approxi-
mation (SCSA) [8], we also show the presence of a glass
transition line in the low-temperature region, once the first-
order transition to the lamellar phase is avoided. Note that
the mechanism for the glass transition in this case is not
due to the presence of hard-core type of potential. Instead,
it is due to the formation of the modulated structures which
order up to the size of correlation length. The geometric
frustration, resulting in arranging such modulated struc-
tures in a disordered fashion, leads to a complex free
energy landscape and, consequently, to a dynamical slow-
ing down.

Our results suggest that the cluster phase observed in
colloidal suspensions should be followed, upon decreas-
ing the temperature (or increasing the volume fraction), by
an equilibrium periodic phase (a tubular or a lamellar
phase, depending on the volume fraction). If, instead,
this ordered phase is avoided, a structural arrest, corre-
sponding to the gel phase observed in the experiments
and in numerical simulations, should eventually occur.
The existence of ordered phases in colloidal suspension
and the fact that the transition to the gel phase could
occur in a metastable liquid, are novel predictions, which
have never been considered before. Recently, motivated
by our work, de Candia et al. [9] have unambiguously
shown the presence of such ordered phases by using
molecular-dynamic (MD) simulations on an atomistic
model system of charged colloids, interacting via the
DLVO potential.

Model and phase diagram.—We consider the standard
three dimensional �4 field theory with the addition of a
repulsive long-range Yukawa potential:
2-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.96.075702


PRL 96, 075702 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
24 FEBRUARY 2006
H ��� �
Z
d3x

�
r0

2
�2�x� �

g
4
�4�x� �

1

2
�r��x��2

�

�
W
2

ZZ
d3xd3x0

e�jx�x0j=���x���x0�
jx� x0j

; (1)

where ��x� is the scalar order parameter field. The model
has been also studied in [10] in the context of microemul-
sion. The parameters W and � are, respectively, the
strength and the range of the repulsive potential. For W �
0 we obtain the canonical short-range ferromagnet.
Interestingly, for �! 1 we recover the case of the
Coulombic interaction [11–17]. This model has been
used to describe the phenomenology of a wide variety of
systems, where competing interactions on different length
scales stabilize pattern formations and the creation of
spatial inhomogeneities (for a review see [18]). These
systems include magnetic systems and dipolar fluids char-
acterized by long-range Coulombic interactions [19], mix-
tures of block copolymers [20], water-oil-surfactant
mixtures [21] and doped Mott insulators, including the
high Tc superconductors [22]. As a consequence, our
model allows to describe and to interpret in an unified
fashion the phenomenology of a wide variety of different
systems.

Here we present only the main results, and we refer to a
paper in preparation for more details [23]. In Fig. 1 the
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FIG. 1 (color online). Temperature (T)-repulsion (4�W) phase
diagram of the model for � � 2 (and r0 � �1), showing the
relative positions of the paramagnetic (P), ferromagnetic (F),
lamellar (L), and glassy (G) phases. The value of g is such that
Tc�W � 0� � 1. The continuous (black) and the dashed (blue)
curves, found within the Hartree approximation, corresponds,
respectively, to the second-order phase transition from P to F,
Tc�W;��, and to the first-order transition from P to L, TL�W;��.
The dotted (green) and the dashed-dotted (red) curves, found
within the SCSA, identify the dynamical, Td�W;��, and the
ideal, TK�W;��, transition temperatures to G. The thin dotted
(black) line (� � lm) marks a crossover temperature below
which the system establishes modulated structures, schemati-
cally sketched in the figure.
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phase diagram of the model as function of the temperature,
T, and the strength of the repulsion, W, is presented, for a
fixed value of the screening length, � � 2.

Ferromagnetic and lamellar phases.—We first solve the
model within the self-consistent Hartree approximation,
which consists in replacing the term g�4=4 of Eq. (1)
with 3h�2i�2=2 [24]. This substitution allows us to com-
pute the correlation function G�k� � h�k��ki � h�ki�
h��ki. In the paramagnetic phase, h�ki � 0, one obtains

TG�1�k� � r� k2 � 4�W=���2 � k2�; (2)

where the renormalized mass term, r, is defined as r 	
r0 � 3gh�2i. Since h�2i �

R
jkj<�

d3k
�2��3

G�k�, from Eq. (2)

the following self-consistent equation for r is derived:

r � r0 � 3g
Z
jkj<�

d3k
�2��3

T

r� k2 � 4�W=���2 � k2�

(3)

(� is an ultraviolet cutoff). For convenience let us define

4�Wc 	 ��4: (4)

For W 
 Wc and a fixed value of �, we find a line of
ordinary second-order critical points, Tc�W;�� (continuous
curve in Fig. 1), separating a high-temperature paramag-
netic phase from a low-temperature ferromagnetic one.
This transition is characterized by the divergence of the
susceptibility, i.e.,G�1�k � 0� � 0, with the usual Hartree
critical exponents (e.g., � � 1 and � � 2 in three dimen-
sions). Thus, for W 
 Wc usual phase separation occurs:
the effect of the repulsive interaction is to decrease the
value of Tc from the critical temperature of the standard
Ginzburg-Landau model (for W � 0) to zero temperature
(for W ! Wc). Conversely, above Wc there is no phase
separation. This result is quite important for designing new
materials as well as in the experimental and numerical
study of colloidal systems, where it is crucial to distinguish
the slowing down due to colloidal gelation from that due to
kinetic of phase separation. Interestingly, the threshold
value Wc, Eq. (4), coincides with that estimated for an
atomistic model system of charged colloids interacting via
the DLVO potential [5].

In the limit �! 1we recover the already known results
for the Coulombic case: phase separation occurs only for
W � 0 [11–17].

For W >Wc, the model instead exhibits a first-order
transition line TL�W;�� (dashed curve of Fig. 1), separat-
ing the paramagnetic phase from a lamellar phase [17,25],
characterized by a spatially modulated order:

h�ki � A���k� km� � ��k� km��; (5)

with amplitude A and wave vector km, given by

k2
m �

�������
4�
p

�W1=2 �W1=2
c �: (6)

For W >Wc the spinodal line of the ‘‘supercooled’’ para-
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FIG. 2 (color online). Main frame: Momentum dependence of
the correlation function, G�k�, for 4�W � 0:2 and � � 2 at T �
Td, showing that it is peaked around the typical modulation wave
vector km with broadening ��1, given by the inverse of the
correlation length. Inset: Momentum dependence of the non-
ergodicity parameter fk for the same values of W, �, and T.
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magnetic phase is located at T � 0, where the susceptibil-
ity diverges [TG�1�km� � 0]. As a result, the first-order
transition to the lamellar phase can be kinetically avoided
and long-time glassy relaxations can be, instead, observed
[14–17,26–28].

Glass transition.—In order to analyze the glass transi-
tion in our model, we employ a replica approach formu-
lated to deal with systems without quenched disorder [7].

The equilibrium free energy, F � �T lnZ, is relevant
only if the system is able to explore ergodically the entire
phase space. This is not the case, of course, in the glassy
phase, where the system is frozen in metastable states. In
order to scan the locally stable field configurations, we
introduce an appropriate symmetry breaking field  �x�,
and compute the following partition function [7]:

~Z� � �
Z

D� exp
�
��H ���

�
u
2

Z
d3x� �x� ���x��2

�
; (7)

where u > 0 denotes the strength of the coupling. The free
energy ~f� � � �T ln ~Z� � will be low if  �x� equals to
configurations which locally minimize H ���. Thus, in
order to scan all metastable states we have to sample all
configurations of the field  , weighted with exp���~f� ��

~F � lim
u!0�

�Z
D ~f� �e��~f� �=

Z
D e��~f� �

�
: (8)

~F is a weighted average of the free energy in the various
metastable states; if there are only a few local minima, the
limit behaves perturbatively and ~F equals the true free
energy F. However, in case of the emergence of an ex-
ponentially large number of metastable states with large
barriers between them, a nontrivial contribution arises
from the above integral even in the limit u! 0� and ~F
differs from F. This allows us to identify the complexity �
via the relation F � ~F� T� [7]. In order to get an explicit
expression for � we introduce replicas

~F�m� � � lim
u!0�

T
m

ln
Z

D �~Z� ��m; (9)

from which, we obtain ~F � @m ~F�m�=@mjm�1 and

� � T�1�@ ~F�m�=@mjm�1�: (10)

Integrating Eq. (9) over  , we get an action which is
formally equivalent to the (replicated) action of a system
in a quenched random field. We can thus use the SCSA [8],
a technique developed to deal with such systems, which
allows to determine the correlators in the replica space.
The SCSA amounts to introducing a N-component version
of the model and summing self-consistently all the dia-
grams of order 1=N [15,16]. Since the attractive coupling
between replicas is symmetric with respect to the replica
index, one can assume the following structure of the
correlators in the replica space: Gab�k� � �G�k� �
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F�k���ab � F�k�, i.e., with diagonal elements G�k� and
off-diagonal elements F�k�. For systems with quenched
disorder, this ansatz turns out to be equivalent to the one-
step replica symmetry breaking. While the diagonal corre-
lator can be interpreted as the usual one-time equilibrium
correlation function, TG�k� � h�k��ki, the off-diagonal
term can be interpreted as measuring the long-time corre-
lations: TF�k� � limt!1h�k�t���k�0�i. Hence, F�k� van-
ishes in the paramagnetic phase while is finite in the glassy
one.

The system undergoes a glass transition in the low-
temperature region for W >Wc, with exactly the same
nature of that found in mean-field models for glass formers.
Lowering the temperature we first find a purely dynamical
transition at temperature Td (dotted curve in Fig. 1). Here,
the complexity, Eq. (10), jumps discontinuously from zero
to a finite value, signaling the emergence of an exponen-
tially large number of metastable state. The complexity
decreases as the temperature is decreased and vanishes at
TK (dashed-dotted curve in Fig. 1) where the thermody-
namical transition takes place.

Structural properties.—The correlation function, G�k�,
is plotted in Fig. 2 at the dynamical transition temperature
Td, showing a maximum at km, defined in Eq. (6), with
width ��1, given by the inverse of the correlation length.
The correlation function in the real space reads: G�jxj� �
e�jxj=� sin�kmjxj�=jxj. This expression implies that,
although no periodic order occurs (h�km

i � 0), a lamellar
structure of wave length lm � 2�k�1

m over a finite range �
is formed (as sketched in Fig. 1). In the glassy phase,
T & Td, one has that � * 2lm [16]: thus these modulated
structures form over a length larger than their modulation
length and become frozen. The glass transition arises from
2-3
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the fact that there are many possible configurations to
arrange such modulated structures in a disordered fashion,
leading to a great number of metastable states. The pres-
ence of this characteristic wave length dominates also the
dynamics, as indicated by the momentum dependence of
the nonergodicity parameter, fk 	 limt!1

h�k�t���k�0�i
h�k�t���k�t�i

�
F�k�
G�k� , plotted in the inset of Fig. 2 at Td. The presence of
a maximum at km signals the fact that structural arrest is
more pronounced over length scales of order lm. At higher
temperatures, T > Td, the nonergodicity parameter fk van-
ishes and the glassy phase disappears; correspondingly,
G�k� broadens and the height of the peak decreases; hence,
� decreases until the modulated structures fade continu-
ously, approximately at a crossover temperature where � �
lm (dotted curve in Fig. 1).

These results are intimately related to the phenomenol-
ogy observed in colloidal systems, where the competition
between attraction and repulsion leads to the formation of a
phase of stable clusters at low temperatures [1–5], which is
the analog of the modulated structures here found. Our
results suggest that the transition to the disordered gel
phase, numerically and experimentally observed in colloi-
dal suspensions, occurs, in fact, in a metastable liquid, due
to the presence of an underlying equilibrium lamellar
phase (which might be more easily detected by increasing
the screening length �). This novel prediction has been
confirmed by recent MD simulations of a model system
of charged colloids in three dimensions [9]; a clear indica-
tion of the presence of periodic phases was also numeri-
cally found in two dimensions [29].

Conclusions.—We have derived analytically the com-
plete phase diagram of a model with competition between
short-range attraction and long-range screened repulsion,
which contains the essential features of the interaction
potential of charged colloids. To our knowledge, this is
the first theoretical investigation on these systems. Our
predictions have been confirmed by recent numerical simu-
lations and may be also experimentally checked.
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