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Size Dependence of Young’s Modulus in ZnO Nanowires
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We report a size dependence of Young’s modulus in [0001] oriented ZnO nanowires (NWs) with
diameters ranging from 17 to 550 nm for the first time. The measured modulus for NWs with diameters
smaller than about 120 nm is increasing dramatically with the decreasing diameters, and is significantly
higher than that of the larger ones whose modulus tends to that of bulk ZnO. A core-shell composite NW
model in terms of the surface stiffening effect correlated with significant bond length contractions
occurred near the {1010} free surfaces (which extend several layers deep into the bulk and fade off
slowly) is proposed to explore the origin of the size dependence, and present experimental result is well
explained. Furthermore, it is possible to estimate the size-related elastic properties of GaN nanotubes and

relative nanostructures by using this model.
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Nanowires have attracted considerable interest as nano-
scale interconnects and active components of optical elec-
tronic devices and nanoelectromechanical systems
(NEMS), etc. The size dependence of their mechanical
properties is important for applying nanowires in NEMS,
etc. and attracted much attention.

Experimentally, the bending modulus of carbon nano-
tubes (CNTs) [1] and Young’s modulus of Ag and Pb NWs
[2] are found to increase dramatically with decreas-
ing diameters. However, investigations on Cr and Si nano-
cantilevers show an opposite tendency [3,4]: their moduli
decrease sharply with decreasing diameters. The investi-
gations on SiC nanorods [5] and Au NWs [6] suggest that
their Young’s moduli do not depend on diameters
essentially.

Theoretical studies are through direct atomistic simula-
tion [7—10] or corrections to continuum theory [2,11,12] to
extract the overall mechanical response of a nanostructure.
The elastic response of nanostructures has been explained
by nonlinear effects [8], surface stresses [2,8,9], and sur-
face elasticity [11,12]. By atomistic simulation, Miller and
Shenoy [12] determined a proportionality constant relating
with the surface elasticity for Si and Al nanobeams and
explained their size dependent Young’s modulus, but gave
no account about what is the physical origin responsible for
the softening or stiffening [10].

In spite of these experimental and theoretical results,
corresponding investigations on oxide are rather scarce.
Recently, the nanomechanical behaviors of one-
dimensional ZnO nanomaterials have become the focus
of several experimental [13—-15] and theoretical [16] re-
searches. Bai et al. [13] obtained an average Young’s
modulus equal to 52 GPa in [0001] oriented ZnO nano-
belts. Yum et al. [14] investigated the dynamic behavior of
cantilevered ZnO nanobelts with the same [0001] orienta-
tion; by the provided resonant frequencies the Young’s
modulus can be calculated as 38—100 GPa. Most recently
by using atomic force microscopy (AFM) Song et al. [15]
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investigated elastic modulus of vertically aligned [0001]
ZnO NWs with an average diameter of 45 nm and arrived
at an average value of 29 = 8 GPa. No obvious size effects
had been discovered in these reports and the obtained
values are far smaller than that of bulk ZnO, which is at
the order of 140 GPa in [0001] direction. Recent molecular
dynamics (MD) simulations performed by Kulkarni et al.
[16] on tensile response of ZnO nanobelts with lateral
dimensions smaller than 4 nm show an increasing modulus
(which is higher than corresponding bulk value) with de-
creasing diameters.

In this Letter the Young’s modulus of ZnO NWs with
diameters ranging from 17 to 550 nm has been investi-
gated. The electric-field-induced resonance method [1] is
served in our experimental measurement. Consequently a
size dependence of Young’s modulus in ZnO NWs is
experimentally revealed, and a theoretical model is pro-
posed to explain the physical origin of the size effect.

7ZnO NWs with a large range in diameters and a uniform
[0001] growth orientation are fabricated by a controllable
thermal evaporation procedure [17]. The as synthesized
NWs are high quality single crystals having a wurtzite
(WZ) structure with lattice constants a = 3.249 A and ¢ =
5.206 A [17]. The typical lengths of the NWs are in the
range of 7-15 um. To facilitate the manipulation of indi-
vidual NWs a cylindrical substrate is used so that free-
standing NWs nearly vertically grown from the substrate
are obtained [17]. The cylindrical substrate with NWs is
mounted directly onto the specimen stage inside a scanning
electron microscope (SEM). A homemade nanomanipula-
tor with a sharp tungsten tip [18] is used to approach an
individual NW. A frequency tunable ac voltage (having a
frequency resolution 1 uHz) with or without dc bias is
applied across the NW and the countering tip. The reso-
nance is directly monitored on the screen of the SEM.

It is critical to determine the fundamental natural fre-
quency w, of a cantilevered NW, namely, critical to dis-
tinguish between forced resonance and parametric
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resonance. Forced resonance occurs at driving frequency
®w = wg, while parametric instability occurs at w =
2wqy/n (n integer larger than 1) [19]. The extremely small
dimensions of nanostructures make it very sensitive to
parametric excitation [20-22]. For a NW with random
orientation relative to the applied electric field, either para-
metric resonance or forced resonance may be excited.
Failing to properly distinguish between these two types
of resonances will lead to incorrectly determined natural
frequency, which may be 2/n (n = 1,2,3,4 can be ob-
served readily in our experiments) times the true natural
frequency, and results in very large deviation of the modu-
lus, since the Young’s modulus is proportional to the square
of the frequency.

Yu et al. [21] has observed multifrequency resonance of
a NW excited by an alternating electric field and ascribed it
to parametric vibration; however, those parameters were
not endowed with explicit physical meanings; Liu and
Tripathi [22] modeled the parametric resonance of a carbon
nanotube based on its polarization under electric field.
They treated the CNT as vertically located between two
parallel electrode plates. This is not so realistic for a
dynamically measured NW. We report here a useful
method to distinguish between parametric resonance and
forced resonance; thus the uncertainty of the natural fre-
quency is avoided.

We fabricated very sharp tungsten probes with typical
tip radii ranging between 20—100 nm, which is necessary
for the subsequent distinguishing between the two types of
resonance. Our experiments reveal that the occurrence of
parametric resonance is determined by the relative orien-
tation of the NW to the countering tip, and actually by the
direction of the force applied to the NW. As shown in
Fig. 1, if the NW is aligned (arranged in a line) with the
tip, resulting in an axially applied force, parametric exci-
tation dominates, while if the force is applied transverse to
the NW length, forced excitation dominates. This is con-
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FIG. 1. Selected frames of a video recording the frequency
responses of a NW subjected to (a), (c), (e) axial excitation, and
(b), (d), (g) transverse excitation, showing: parametric resonance
of (a) first order at w = 2w, and (e) second order at w = w,
under axial excitation (the second order require a much higher dc
voltage of 3 V); forced resonance (d) and (g) occurred at w =
wq under transverse excitation; (f) transition from parametric to
forced vibration. Scale bars represent 1 pm.

sistent with the parametric resonance of a macroscopic
beam under periodic axial load, which is a typical subject
of parametric instability [19].

The measured values of the Young’s modulus E of ZnO
NWs are shown as a function of the diameter in Fig. 2. For
an anisotropic beam the value obtained through the
resonance-based method is the effective axial Young’s
modulus [23]. For the wurtzite ZnO with hexagonal sym-
metry there are five independent elastic constants ¢;; (i, j
run from 1 to 6). The Young’s modulus in [0001] direction
can be expressed as:

E3 = c33 — 215/ (cqy + cpa). (N

Substituting the elastic constants given in Ref. [24] to
Eq. (1) gives E5 = 140 GPa for bulk ZnO.

As shown in Fig. 2, for NWs with larger diameters D
(> about 120 nm) the measured Young’s modulus is
slightly dependent of the diameter and tends to the value
of bulk ZnO, while the D is decreasing from 120 nm down
to 17 nm the measured values are dramatically increasing.
No obvious tendency of Young’s modulus to change with
the length is observed.

Since our experimental NWs are high quality single
crystals with few defects, it is expected that such a phe-
nomenon of size dependence may originate from surface
modification of NWs, as the surface effect becomes sig-
nificant due to the large surface-to-volume ratio. One thing
should be noted is that flexural deformation (vibration) is
the case where the surfaces carry the largest stresses and
strains due to their larger distance from the neutral axis.
For this reason the surface elasticity may have a more
pronounced contribution to the effective stiffness than an
axial monotonic deformation does.
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FIG. 2 (color online). Diameter dependence of effective

Young’s modulus in [0001] oriented ZnO nanowires for bending:

(red dot) experimental results, (solid line) fitted results by the

core-shell composite NW model, (blue dashed line) modulus for

bulk ZnO (E;) calculated using the experimental data from
Ref. [24].
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The ZnO (1010) surfaces which are the lateral facets of
our experimental NWs can be considered as consisting of
rows of Zn-O dimers parallel to the [0001] direction, which
are then bonded to dimers in its subsequent layer.
Extensive theoretical and experimental results [25-28]
on surface structure of ZnO show that the nonpolar
(1010) free surfaces undergo significant relaxation charac-
terized by bond length contractions which amount up to
8% and 5%, respectively, for the in-plane and backbonds of
the Zn-O dimers [26,27], and significant bond contractions
extend at least five or six layers below the film surface [27].

This relaxation may have a prominent effect on the
surface elastic properties, since the elastic constants of
crystals are indeed very sensitive to the interatomic dis-
tance d [29,30]. In bulk materials the elastic constants
follow approximately a variation of d~* [29,30]. At the
surface the effect of the reduced coordination number of
the atoms should also be involved. Recent Bond-OLS
(bond-order-length-strength) correlation analysis per-
formed by Sun et al. [31] shows that the imperfect coor-
dination number causes the remaining bonds of the lower
coordinated surface atoms to relax and raises the binding
energy; as a result, the effect of bond contractions at the
surface will be more significant than that in a bulk one.

A NW with modified surface layers can be treated as a
composite wire shown in Fig. 3 with a core-shell structure
composed of a cylinder core having modulus of bulk
material E, and a surface shell coaxial with the core but
having a surface modulus E; which is correlated to the
surface bond length contractions. It is noticed that the
surface effect extending deep into the bulk is a gradual
process and fades off slowly; however, to simplify the
problem and without influencing the analysis of the prob-
lem, we treat the relaxed surface layers approximately as a
uniform shell possessing an average bond contraction Ad
through the overall thickness. Consequently the size-
related elastic properties can be analyzed in terms of the
approximate core-shell composite NW model.

Flexural rigidity is the governing parameter for trans-
verse deformation. We define EI as the effective flexural
rigidity of the composite NW, with E the effective Young’s
modulus in the axial direction. Neglecting shear deforma-
tion, we obtain:

El = Egl, + E,I,, 2)

where I and I, are the moment of inertia of cross section
of the core and the shell, respectively. Substituting /, and /;

- , [
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FIG. 3 (color online). (a) Schematic illustration of the core-
shell composite NW model; (b) the cross section.

to (2) expanding and rearranging we obtain:

PN Y LIS VL SN L S
0[ (Eo ><D D> D’ D“ﬂ’
3)

where r; is the depth of the shell and D the NW diameter.

Equation (3) is used to fit the experimental results; the
fitting curve is also shown in Fig. 2. It can be seen that the
tendency of the Young’s modulus versus the NW diameter
described by Eq. (3) derived from the core-shell composite
NW model fits reasonably well with the experimental
results. The optimized curve fitting yields the values for
three parameters, namely, E, = 139 GPa, E,/E, = 1.50,
and r; = 4.4 nm.

The obtained E; value is quite close to the bulk value
E; = 140 GPa calculated from the experimentally deter-
mined elastic constants from Ref. [24].

The value E,/E, is a critical parameter determining the
tendency of the size dependence of the Young’s modulus.
According to the bond-OLS analysis of Sun et al. [31,32]
the correlation between surface modulus and the bond
contraction can be described as:

(E; = Eo)/Eg = b;™ = 3b; +2, “

where E; and E; are the Young’s moduli of the ith atomic
layer and bulk materials, respectively; b; is defined as
d;/d,, with d; and d, the bond length in the ith layer and
the bulk value, m is a parameter used to describe the
change of the binding energy, for compound and alloys
m =4 [31,32].

As mentioned above we assume an average bond length
contraction Ad for the shell. Substituting m =4, d, =
1.99 A [26] (which is consistence with the lattice constants
of the experimental NWs), and E,/E, = 1.50 into Eq. (4)
we obtain Ad = 0.13 A. This value is smaller than the
largest bond contraction 0.16 A which occurs at the out-
most surface layer [26], and seems reasonable at least on a
qualitative level. However, Eq. (4) is still an approximation
[31,32]; therefore, the obtained Ad = 0.13 A is a rough
estimation.

The value r; = 4.4 nm obtained through curve fitting
implies that a NW with diameter of about 8.8 nm will be
fully relaxed and have an effective modulus equal to Ej,
and it is expected that our model is applicable for diameters
larger than 8.8 nm. Recently Kulkarni et al. [16] performed
MD simulations on tensile response of [0001] oriented
nanobelts with lateral dimension smaller than 4 nm and
enclosed by {1120} and {1010} lateral surfaces. At so small
dimensions our model may not work since the correspond-
ing relaxation behavior is still much unclear and remains
an open question.

Extension of the present analysis to elastic properties of
other NW structures with a modified surface structure is
possible. For example, the GaN with also a WZ structure
has a surface relaxation similar to that of ZnO due to the
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strong ionicity arising from the existence of the first row
element N just as O for ZnO [33-35], with an in-plane
bond length contraction in the nonpolar {1010} surfaces up
to 7.4% [35], which allows us to predict an increasing
modulus of GaN NWs with decreasing diameters. This is
confirmed by the most recent energetic calculations per-
formed by Xu et al. [36] on single crystal GaN nanotubes
having a WZ structure and with nonpolar {1010} lateral
facets. Their calculations reveal a significantly increased
modulus with increased surface-to-volume ratio.

In summary, a size dependence of Young’s modulus in
[0001] oriented ZnO NWs is experimentally revealed. The
Young’s modulus of ZnO NWs with diameters smaller than
about 120 nm increases dramatically with decreasing di-
ameters, and is significantly higher than that of the larger
ones whose modulus tends to that of bulk ZnO. An ap-
proximate core-shell composite NW model in terms of the
surface stiffening effect arising from the gradually short-
ened bond lengths from the bulk core to the outmost
surface is proposed, through which the size dependence
of Young’s modulus is well explained. It is possible to
extend the core-shell model to estimate the size depen-
dence of Young’s modulus in relative nanostructures such
as single crystal GaN nanotubes.
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