
PRL 96, 073906 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
24 FEBRUARY 2006
Three-Step Model for High-Harmonic Generation in Many-Electron Systems
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The three-step model (TSM) of high-harmonic generation (HHG) is generalized to atomic and
molecular many-electron systems. Using many-body perturbation theory, corrections to the standard
TSM due to exchange and electron-electron correlations are derived. It is shown that canonical Hartree-
Fock orbitals represent the most appropriate set of one-electron states for calculating the HHG spectrum.
To zeroth order in many-body perturbation theory, a HHG experiment allows direct access, in general, to a
combination of occupied Hartree-Fock orbitals rather than to the highest occupied molecular orbital by
itself.
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High-harmonic generation (HHG) is well understood
within the framework of the three-step model [1,2]
(TSM) when the Keldysh parameter [2] is small. (See
also Ref. [3].) An electron in the atom or molecule is
ionized, is accelerated in the laser field, and recombines
with the ion core emitting a HHG photon. The probability
amplitude for emitting a HHG photon is given by the
product of the three probability amplitudes assigned to
each step [4].

The shape of the HHG spectrum is predominantly de-
termined by the recombination amplitude. If the effect of
the binding potential on the electron continuum states is
neglected, the latter can be replaced by plane waves, which
results in the well-known expression for the recombination
amplitude arec obtained by Lewenstein et al. [2]:

arec
Lew�k� � h0jdjki: (1)

Here, d is the dipole operator, jki is a momentum eigen-
state (a plane wave), and j0i is the ground state.

When propagation effects play a negligible role, arec can
in principle be extracted from experimental HHG spectra.
Therefore, according to Eq. (1), HHG can be used to
measure the ground-state wave function (not merely the
probability density). This idea was exploited in a recent
groundbreaking work [5].

Equation (1) strictly applies only to a single-electron
system. At the heart of this Letter lies the derivation of an
expression that generalizes Eq. (1) to many-electron sys-
tems. This expression leads to three results. First, to the
extent that the HHG process can be assigned to one-
particle wave functions, it is the Hartree-Fock orbitals
that are imprinted in the HHG spectrum. Electron-
correlation effects appear in lower order in many-body
perturbation theory than corrections due to the difference
between, say, Dyson orbital and Hartree-Fock orbital.
Second, we show that the HHG recombination amplitude
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in many-electron systems is sensitive to all occupied orbi-
tals rather than to the highest occupied orbital alone. Third,
we find the leading correction to the single-particle picture
due to many-body effects. Computational treatments of
HHG in many-electron systems may be found, e.g., in
Refs. [6,7].

The vast majority of stable molecules exhibit a closed-
shell electronic structure (total spin S � 0). This is the case
we will focus on in this Letter. Of the three TSM ampli-
tudes [4], this study is concerned with the recombination
amplitude alone because it is considered [2,4,5] the most
influential factor on the shape of the HHG spectrum.
Therefore, we assume the simplest scenario for the ioniza-
tion step: Following ionization, the many-electron wave
packet is in a superposition of the nondegenerate
N-electron ground state j�N

0 i and continuum states asso-
ciated with the various eigenstates of the �N � 1�-electron
system. The cationic eigenstates of relevance here are
characterized by S � 1=2. In addition to the neutral ground
state only the (doubly degenerate) cationic ground state,
j�N�1

0� i, is populated (� denotes the sign of the spin
projection number). This assumption can be motivated by
the fact that the probability of exciting two electrons at
once is negligible. However, the ionization step may re-
quire more detailed attention, especially for complex mole-
cules [8].

Thus, we make the ansatz

j�i � j�N
0 i �

X
k

bk�t�
1���
2
p fcyk�j�

N�1
0� i � c

y
k�j�

N�1
0� ig;

(2)

which is the many-electron analogue of Eq. (3) of Ref. [2].
Depletion of the N-electron ground state is neglected for
simplicity and can be easily reintroduced when needed.
The operator cyk� creates an electron in a plane-wave state
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characterized by the momentum vector k and the spin
projection �� 1=2. [Box normalization is implied
throughout. See, for example, Ref. [9] for the phase con-
vention underlying the construction of the S � 0 contin-
uum state in Eq. (2).]

Let D̂ stand for the dipole operator in the many-particle
Fock space. The TSM recombination amplitude analogous
to Eq. (1) is now given by

arec�k� �
1���
2
p

X
�

arec
� �k�; (3)

where

arec
� �k� � h�

N
0 jD̂c

y
k�j�

N�1
0 �� i: (4)

Here, �� � ��. The dipole operator in the second quanti-
zation takes the form [10]:

D̂ �
X
k0�0

X
k00�00

dk0�0;k00�00c
y
k0�0ck00�00 : (5)

Upon inserting Eq. (5) in Eq. (4) and exploiting the
anticommutation relations [10] satisfied by the ck0�0 and
cy
k0�0 operators, we arrive at the following expression for

the recombination amplitude:

arec
� �k� � h’

�D�
0� jdjk�i � h�

N
0 jc

y
k�D̂j�

N�1
0 �� i: (6)

j’�D�0� i is the Dyson (spin) orbital [11–13] deriving from
j�N�1

0 �� i:

’�D�0� �x� � h�
N�1
0 �� j�̂�x�j�

N
0 i

�
X
k0�0
hxjk0�0ih�N�1

0 �� jck0�0 j�
N
0 i: (7)

�̂�x� is the field operator [10], which removes an electron
at position x. The relation

�̂�x� �
X
k0�0
hxjk0�0ick0�0 (8)

has been used. The first term in Eq. (6) equals the Fourier
transform of the dipole operator times the Dyson orbital
j’�D�0� i. (Dyson orbitals, which are independent of a specific
one-particle model, are common in ionization problems
[11–13].) In what follows we analyze the two terms in
Eq. (6).

The recombination of a high-energy electron with the
cation is the inverse process of photoionization high above
threshold. In this limit, it is known [14] that the ionization
cross section can be expressed in terms of the one-particle
Green’s function [10]. If and only if the perturbative analy-
sis of the one-particle Green’s function is based on the
canonical Hartree-Fock model [9] corresponding to the
neutral ground state of the molecule, all self-energy dia-
grams in first order with respect to the residual electron-
electron interaction vanish [15]. This is the basis of
Koopmans’ theorem [16]. Motivated by this observation,
we base our analysis of Eq. (6) on Hartree-Fock orbitals.
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Let

F̂ �
X
p

"pc
y
pcp (9)

denote the Hartree-Fock one-body operator. Its eigenstates
j’pi in the one-electron Hilbert space are spin orbitals
forming a complete orthonormal set. The eigenvalues "p
are orbital energies. Orbitals and energies may be assumed
real. We use indices i; j; k; l; . . . for orbitals that are occu-
pied in the N-electron Hartree-Fock ground state

j�N
0 i �

YN
i�1

cyi jvacuumi: (10)

Unoccupied orbitals are symbolized by indices
a; b; c; d; . . . , whereas for general orbitals indices
p; q; r; s; . . . are employed.

Applying Møller-Plesset [17] partitioning, the exact
electronic Hamiltonian Ĥ is then given by

Ĥ � F̂� V̂ � V̂�HF�; (11)

where

V̂ �
1

2

X
pqrs

vpqrsc
y
pc
y
qcscr (12)

is the Coulomb two-body operator and

V̂ �HF� �
X
pq

�X
i

vpi�qi�

�
cypcq (13)

represents the interaction with the Hartree-Fock mean
field. Here we made use of the definition vpq�rs� � vpqrs �
vpqsr (vpqrs is a standard electron-electron Coulomb ma-
trix element).

Using the canonical Hartree-Fock orbitals, the two ma-
trix elements contributing to the recombination amplitude
in Eq. (6) can be written as

h’�D�0 jdjki �
X
p

h�N
0 jc

y
pj�N�1

0 ih’pjdjki; (14)

h�N
0 jc

y
kD̂j�

N�1
0 i �

X
p

h�N
0 jc

y
pD̂j�N�1

0 ih’pjki: (15)

(In order to keep the notation from becoming too cluttered,
the spin index in j’�D�0� i, jk�i, and j�N�1

0 �� i is suppressed
from now on.) The exact eigenstates j�N

0 i and j�N�1
0 i can

be expressed in terms of determinants deriving from the
Hartree-Fock ground state. Employing perturbation theory
to first order in the interaction

Ĥ 1 � V̂ � V̂�HF�; (16)

one obtains

j�N
0 i � j�

N
0 i �

X
a<b

X
i<j

vab�ij�
"i � "j � "a � "b

cyac
y
bcjcij�

N
0 i

�O�H2
1� (17)
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and

j�N�1
0 i � c0j�

N
0 i �

X
a

X
i<j

va0�ij�

"i � "j � "0 � "a
cyacjcij�

N
0 i

�
X
a<b

X
i<j

vab�ij�
"i � "j � "a � "b

cyac
y
bcjcic0j�

N
0 i

�O�H2
1�: (18)

Note that due to the use of the Hartree-Fock model, single
excitations of j�N

0 i do not contribute to the exact ground
state of the neutral system. Also observe that we assumed
that there is one specific orbital j’0i—the highest occu-
pied molecular orbital (HOMO)—that characterizes the
cationic ground state to leading order. This is meaningful,
since the Hartree-Fock one-hole configurations do not
couple among each other.

Substituting Eqs. (17) and (18) into Eq. (14), it follows
that

h’�D�0 jdjki � h’0jdjki �O�H2
1�: (19)

Thus, up to second order in many-body perturbation the-
ory, the recombination amplitude does not distinguish
between Dyson orbital and Hartree-Fock orbital. For the
second matrix element in Eq. (6) we find, using Eq. (15),

h�N
0 jc

y
kD̂j�

N�1
0 i�

X
i

fdiih’0jki�d0ih’ijkig

�
X
i

h’ijki
X
a

X
j

dja
va0�ij�

"i�"j�"0�"a

�
X
a

h’ajki
X
b

X
i

dbi
vab�0i�

"0�"i�"a�"b

�O�H2
1�: (20)

From this result we draw the following conclusions.
First, the matrix element h�N

0 jc
y
kD̂j�

N�1
0 i, which forms

an integral part of the recombination amplitude [Eq. (6)],
does not vanish in zeroth order. There are exchange terms
that depend on all occupied orbitals that are connected to
j’0i via an electric dipole transition. In addition, if a polar
molecule is considered that is not just aligned but oriented
relative to the laser polarization axis, then there are cor-
rection terms associated with static dipole moments dii.
Therefore, while Eq. (19) shows that at the one-particle
level HHG is, in principle, sensitive to the Hartree-Fock
HOMO, there is no obvious way to accurately reconstruct
it without a priori knowledge of the occupied orbitals. The
strength of HHG-based orbital imaging rests in the fact that
it gives access to the phase of (a combination of) orbitals
rather than the probability density alone. Second, as a
consequence of electron correlation—in both the cation
and the neutral molecule—there are first-order corrections
[terms in Eq. (20) depending on the electron-electron
repulsion matrix elements vpq�rs�]. In a perturbation-
theoretic sense, these corrections are greater than the
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second-order difference between a Dyson orbital and a
Hartree-Fock orbital.

At last, it is useful to estimate some of the terms in
Eq. (20) for a specific example. For this purpose, we
choose atomic argon. Instead of the canonical Hartree-
Fock orbitals we employ orbitals calculated utilizing the
Hartree-Slater code by Herman and Skillman [18,19]. The
Hartree-Slater one-electron potential VHS�r� is local and
central, and the occupied Hartree-Fock orbitals in a closed-
shell atomic system such as argon are fairly well repro-
duced. Using the Hartree-Slater potential and orbitals al-
lows comparing the TSM HHG spectrum with the
numerical solution of the time-dependent Schrödinger
equation (TDSE). The corresponding Hamiltonian is

H�t� � H0 � E�t�z; H0 �
p2

2
� VHS�r�; (21)

where E�t� is the laser electric field.
Equation (21) describes a single-electron system. Yet,

surprisingly, the corresponding TSM recombination am-
plitude contains exchange terms identical to the zeroth-
order terms in Eq. (20). To show this we introduce the
evolution operator U�t� associated with H�t�, with the
initial condition U�0� � 1. The electron that is most likely
to participate in the HHG process is the 3pz electron,
because it is most easily tunnel-ionized.

Let j’0i denote the 3pz orbital ofH0, and let j’ii (i � 0)
denote the (spatial) orbitals of H0 with lower energy. By
the unitarity of the time evolution, U�t�j’0i always re-
mains orthogonal to U�t�j’ii. However, the intensity of
the laser field in an HHG experiment is dictated by the
requirement that the tunnel-ionization rate of j’0i is slow
compared to the laser cycle. Therefore, the states j’ii are
barely affected by the field. In other words, U�t�j’ii 	
j’ii up to a phase. From this argument it follows that
U�t�j’0i remains nearly orthogonal to all j’ii. If this
were not the case, one would have to artificially project
the j’ii out of U�t�j’0i to enforce the exclusion principle.

The above observation suggests that the approximation
of the continuum electron by a plane wave within the
standard TSM can be improved by projecting the j’ii out
of it. This leads to the recombination amplitude

arec
HS�k� � h’0jdjki �

X
i

d0ih’ijki: (22)

The exchange correction in this expression is identical (in
the atomic case) to the zeroth-order correction derived
using the many-body approach [see Eqs. (6), (19), and
(20)]. Higher order terms in the residual electron-electron
interaction are not reproducible by one-particle arguments.

Although Eq. (21) is a very simplified model of an argon
atom, the fact that the exchange (projection) terms still
show up in the TSM allows testing the TSM by comparison
with the numerical solution of the TDSE. In particular, one
6-3
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FIG. 1 (color online). HHG spectrum for the Hamiltonian (21)
with VHS corresponding to argon. E�t� � E0 sin!t, where ! �
0:057 a:u: corresponding to a 800 nm laser, and E0 � 0:12 a:u:
The spectrum was extracted after one laser cycle. The dotted line
and the thin solid line were obtained from a numerical solution
of the TDSE with and without projecting out the states below 3p
at every step. The dashed and the thick lines were obtained using
the TSM, with Eqs. (1) and (22), respectively.
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can see which expression, (1) or (22), better approximates
the HHG spectrum.

The comparison is displayed in Fig. 1. One can see that
the spectrum obtained by integrating the TDSE barely
depends on whether the occupied orbitals are projected
out (dotted line) or not (thin solid line) at each step of
the integration. However, the TSM spectrum with Eq. (1)
significantly differs from the one with Eq. (22), and the
latter agrees much better with the TDSE result. The ion-
ization rate used in Fig. 1 was computed for the argon VHS

using a suitably adapted version of the technique described
in Ref. [20]. The acceleration form of the dipole operator
[d � �@zVHS�r�] was used, since it gives more accurate
TSM spectra than other forms [21].

The TSM provides a clear physical picture of the pro-
cesses underlying HHG. It not only allows one to calculate
HHG spectra in a computationally efficient fashion, it also
highlights HHG as a potentially powerful diagnostic tool in
atomic and molecular physics. The many-body formula-
tion of the TSM developed in this work lays the foundation
for connecting HHG and the properties of many-electron
systems.
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