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We present a solution to the problem of reflection and refraction of a polarized Gaussian beam on the
interface between two transparent media. The transverse shifts of the beams’ centers of gravity are
calculated. They always satisfy the total angular momentum conservation law for beams, but, in general,
do not satisfy the conservation laws for individual photons as a consequence of the lack of the ‘‘which
path’’ information in a two-channel wave scattering. The field structure for the reflected and refracted
beams is analyzed. In the scattering of a linearly polarized beam, photons of opposite helicities are
accumulated at the opposite edges of the beam: this is the spin Hall effect for photons, which can be
registered in the cross-polarized component of the scattered beam.
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Introduction.—Reflection and refraction of plane elec-
tromagnetic waves at the interface between two homoge-
neous transparent media is described by the Snell law and
the Fresnel formulas [1]. However, in the case of the
localized wave packets (or beams) the Snell law, as well
as the Fresnel formulas (as shown below) give no exact
description of their refraction and reflection. First, the
reflected packet undergoes a short longitudinal shift in
the reflection plane: this is the Goos–Hänchen effect [2],
which is not a subject of this work. Besides, a circularly (or
elliptically) polarized incident packet experiences a trans-
verse shift (TS) and leaves the plane of incidence when
refracting or reflecting. This effect was originally predicted
by Fedorov [3] and since that time has been discussed in a
number of papers, both theoretical [4–7] and experimental
[8–10].

TS plays a fundamental role in electrodynamics: this
phenomenon is responsible for the conservation of the total
angular momentum (TAM) of an electromagnetic beam,
including the intrinsic (spin) part [5,7]. For a smoothly
inhomogeneous medium this effect represents the optical
Magnus effect [6,9,11] or the recently discovered topologi-
cal spin transport (spin Hall effect) of photons [7,12].
However, in spite of a long period of research, up until
now the ultimate answer as to the magnitude of TS, along
with the correct wording of the TAM conservation law for
an electromagnetic beam, has not been found: almost all
papers [3–7] result in different answers.

In this Letter we propose an exact solution to the prob-
lem of reflection and refraction of an arbitrary polarized
Gaussian beam in the framework of classical electrody-
namics. This enables us to evaluate TSs of the centers of
gravity of the scattered beams, to determine the TAM
conservation law that governs the process, and to analyze
the field structure in the beams, which reveals the spin Hall
effect for photons. It is shown that the mixing of classical
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and quantum arguments can lead to an incorrect determi-
nation of the beam TS.

Angular momentum conservation laws.—TAM of a po-
larized electromagnetic wave packet J consists of the
orbital momentum L and the intrinsic (spin) momentum
S. The TAM density (TAM of one photon) can be repre-
sented as j � r� k� �ej�3je�k=k (@ � c � 1) [7]. Here
r, k, and je� are the radius vector, wave vector, and two-
component polarization vector of the wave packet center
[je� is written in the basis of circular polarizations, i.e.,
helicity basis]; �3 � diag�1;�1� is the Pauli matrix. TAM
is related to the TAM density as J � Nj, where N � W=!
is the number of photons in the packet, W is the total field
energy of the beam, and ! stands for the frequency (we
consider a monochromatic packet). When a wave packet is
scattered on the interface z � 0 between two homogeneous
media, the normal to the surface component of TAM is
conserved owing to the axial symmetry of the problem:
J�i�z � J�r�z � J

�t�
z . From here on, the superscripts �i�, �r�,

and �t� correspond to the incident, reflected, and refracted
wave packets, respectively. The energy conservation law
results in the conservation of the total number of photons:
N�i� � N�r� � N�t�. Taking into account that W / "jEj2V
(" stands for the permittivity, E is the electric field in the
wave packet, and V is the packet volume), and that the
volume of the packet varies as V / n�1j cos#j in the
course of refraction (n �

�������
"�
p

is the refraction index,
while # is the angle between k and z axis), the conserva-
tion law for the z component of TAM reads [5]

j�i�z � R2j�r�z � T2 n2�1 cos�0

n1�2 cos�
j�t�z : (1)

Here R; T � jE�r;t�j=jE�i�j are the Fresnel reflection and
refraction coefficients for plane waves, subscripts 1 and
2 refer to parameters of the first and the second me-
dium, � stands for the permeability, and we denote
3-1 © 2006 The American Physical Society
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FIG. 1 (color online). The scheme of the wave reflection and
refraction with beam coordinates used in the text.
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#�i� � �, #�t� � �0, #�r� � �� � (Fig. 1). Equation (1)
constitutes the main TAM conservation law for a wave
packet; it has a classical nature and follows immediately
from the Maxwell equations [5].

Equation (1) is inadequate for determining the shifts of
the centers of gravity for the reflected or refracted wave
packets since one equation contains two unknown terms.
Another approach has been suggested in [7], where the au-
thors consider the wave packet scattering as a set of indi-
vidual reflection and refraction events of isolated photons.
In this case each photon finds itself either in the medium 1
(is reflected) or in the medium 2 (is refracted); hence two
TAM conservation laws take place for one photon:

j�i�z � j�r�z ; j�i�z � j�t�z : (2)

Equation (2) determined the TSs of the wave packets in [7];
numerical simulation for a circularly polarized incident
wave packet has shown a good agreement with the theory.

At the same time, Eqs. (2) do not always satisfy the main
conservation law (1). Equations (1) and (2) coincide only
in particular cases: e.g., in the case of total internal reflec-
tion, where R � 1, T � 0, or in the case of small contrast
between two media, jn2 � n1j � �n� 1. In the latter case
T2 n2�1 cos�0

n1�2 cos� � 1�O��n2�, R2 � O��n2�, and Eq. (1) is
equivalent to the second Eq. (2) in the linear approximation
in �n, i.e., in the geometrical optics approximation
[6,7,11,12]. This clarifies the fact that jz is an exact integral
of motion for the modified equations of geometrical optics
in an axially symmetrical medium [7]. Below is shown that
Eqs. (2) are consistent with Eq. (1) for a circularly polar-
ized initial beam. However, this is not true in the general
case of an elliptically polarized beam. We will demonstrate
that the scattering of the Gaussian electromagnetic beam in
all cases satisfies Eq. (1) and not Eq. (2). The fallacy of
Eqs. (2) stems apparently from the quantum-mechanical
approach [7], which is based on the events for individual
photons. The point is that classical electrodynamics de-
scribes a multiphoton interference pattern. By invoking the
conservation laws (2) we invoke thereby a ‘‘which path’’
information, which destroys, as is well known from quan-
tum mechanics, the interference pattern in the multiphoton
scattering. Thus Eqs. (2) are suitable for describing the
scattering process of individual photons; however, in the
generic case, they are inapplicable in the scattering of
classical wave packets [13].

Gaussian beam reflection and refraction. Transverse
shift.—The electric field of the wave packet incident in
the plane �x; z� can be represented in the form of a polar-
ized Gaussian beam:

E �i� � A
eX �m�ey � yBeZ�������������������

1� jmj2
p exp

�
ikZ�

ikBy2

2

�
: (3)

Here we use a reference frame XyZ associated with the
beam (Fig. 1); eX;y;Z are its unit vectors, the complex value
m is related to the beam polarization, the polarization in the
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beam center, y � 0, is characterized by the polarization
vector �eX �mey�=

������������������
1� jmj2

p
, or in the helicity basis,

je� �
1� im
1� im

� �� ������������������������
2�1� jmj2�

q
;

and the complex parameters A � A�Z� and B � B�Z� vary
along the beam in consequence of its diffraction (standard
solutions in a homogeneous media are obtainable in the
framework of the complex geometrical optics [14]). A is
the beam amplitude, while the real and imaginary parts of
B are responsible for the phase front curvature and the
beam width, respectively.

For the sake of simplicity we assume that the beam (3) is
confined in y only, which enables us to consider only TS
along this coordinate and not the Goos–Hänchen effect.
The deviation from the center, y � 0, results in a small
longitudinal (in the eZ direction) field component propor-
tional to y. Owing to this component, field (3) satisfies the
Maxwell equations for a homogeneous medium: divE �
0, i.e., E is orthogonal to the local wave vector kloc. It is the
longitudinal field component that is responsible for TS of
the beam center in the process of beam reflection and
refraction. The representation of the Gaussian polarized
beam in the form of (3) holds good for sufficiently large
distances y until the wavelength is small compared to the
characteristic beam width and the radius of curvature of its
phase front: jBjy� 1.

The field of the reflected and refracted beams can be
obtained from Eq. (3) supplemented by standard boundary
conditions [1]. As a result of cumbersome but direct cal-
culation, the fields for all three beams, �i�, �r�, and �t�, can
be written in a unified form:

Ea�
AaSa�������������������

1�jmaj2
p exp

�
ikaZa�

ikaBay2

2

�

�

��
1�

maBay
�a sin#a

�cos���a cos#a�
�

eXa

�

�
ma�

Bay
sin#a

�cos#a��acos��
�

ey�maBayeZa
�
;

(4)
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where a��i�;�r�;�t�, S�i;r;t� �1;RsgnRk;T, ��i;r;t� �1;R?=
Rk;T?=Tk; ma � �am is the characteristic of a central
polarization of the corresponding beam, k�i� � k�r� � k,
k�t� �kn2=n1, A�i� � A, B�i� � B, A�r;t�, and B�r;t� are de-
termined from the boundary conditions A�r;t�jz�0 � Ajz�0

and B�r;t�jz�0 � Bjz�0. For all beams the associated
Cartesian coordinates XayZa and their unit vectors
eXa;y;Za are used (Fig. 1). In the definitions above, we
used the Fresnel refraction and reflection coefficients for
the plane linearly polarized waves whose electric vector is
parallel or orthogonal to the incidence plane [1]: Tk �
2"1n2 cos�=�"2n1 cos�� "1n2 cos�0�, T? � 2�2n1 cos�=
��2n1 cos���1n2 cos�0�, Rk � 1� cos�0Tk= cos�,
R? � T? � 1.

To determine the beams’ centers of gravity, let us con-
sider the projection of the field (4) onto its central polar-

ization vector [6]: F � Ea�eXa �maey�=
���������������������
1� jmaj2

p
. This

value can be represented in the first approximation in
jBjy� 1 as F � AaSa exp	ikaZa � ikaBa�y� �ya�2=2
,
where �ya is a complex value (�y�i� � 0). Its imaginary
part is responsible for phenomena associated with a phase
front curvature (they are omitted in the present study [15]),
while Re�ya � �a, represents TS associated with the
TAM conservation. Calculations yield

�a � �
cot�
k

Imm�1� �a2 � 2�a cos#a= cos��

1� �a2jmj2
: (5)

Formulas for Tk;? and Rk;? have been considered real,
which excludes the case of total internal reflection,

where cos�0 �
������������������������������������
1� �n2

1=n
2
2�sin2�

q
becomes imaginary.

Calculations for the totally reflected beam read

��totr� � �
2 cot�
k

Imm�1� Re��r�� � Rem Im��r�

1� jmj2
: (6)

Let us verify now the agreement between Eqs. (5) and
(6) and the TAM conservation laws (1) and (2). The z
component of the beam’s TAM density equals [5,7] jaz �
��aka sin#a� 2Imma

1�jmaj2
cos#a. By substituting these values

along with TSs (5) and (6), and R�
������������������������������������
jRkj

2�jR?j
2jmj2

q
=�����������������

1�jmj2
p

, T �
�������������������������������������
jTkj

2 � jT?j
2jmj2

q
=
������������������
1� jmj2

p
(or T � 0

for the total internal reflection) into (1), we make sure that
the TAM conservation law (1) is satisfied identically. At the
same time, shifts (5) and (6) satisfy the TAM conservation
laws for individual photons, Eqs. (2), solely in the follow-
ing particular situations: (A) the incident beam is linearly
polarized, Imm � 0, and �a � 0; (B) the incident beam is
circularly polarized, m � �i [this explains a good agree-
ment of numerical simulation in [7] with Eqs. (2)]; (C) the
case of total internal reflection, where just one scattering
channel exists and laws (1) and (2) are identical. In all other
cases shifts (5) do not satisfy Eqs. (2).

Spin Hall effect of light.—Equation (4) enables one not
only to find TS of the centers of gravity but also to
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determine the field structure in the reflected and refracted
beams. One can see that the reflected and refracted beams
do not have the form of the Gaussian beams (3) shifted in
accordance with Eqs. (5) and (6). However, in the first
approximation in jBjy� 1, field (4) can be represented
as a superposition of two Gaussian circularly polarized
beams like (3): Ea � ��Ea� � ��Ea�, where ����1�

ima�=
�������������������������
2�1�jmaj2�

p
and Ea� � AaSa eXa�i�ey�yBaeZa ���

2
p �

exp	ikaZa � ikaBa�y��a��2

2 
. Assume that the incident beam
is linearly polarized with the electric field parallel or
orthogonal to the incidence plane: mk;? � 0;1. In this
case �a � 0; however, the shifts of the reflected and
refracted partial beams Ea� are nonzero and oppositely
directed: �a�

k
� ��cos#a � �a cos��=k sin� and �a�? �

��cos#a � �a
�1

cos��=k sin� (here we do not consider
the total internal reflection case). This confirms the pre-
dicted earlier effect of splitting of a beam of mixed polar-
ization into two circularly polarized beams in an
inhomogeneous medium [11,12]. The splitting is very
small—fractions of the wavelength; nevertheless, it leads
to new observable phenomena.

Indeed, the elliptical polarizations of opposite signs
arise at the opposite edges of the beam. (As a consequence,
the beam as a whole is depolarized, i.e., in contrast to the
Fresnel formulas for plane waves, the polarization state of
the linearly polarized beam changes after reflection and
refraction and becomes mixed.) In the approximation con-
sidered, the degree of the circular polarization is propor-
tional to y, i.e., it grows linearly with the distance from the
beam center. The initiation of elliptical polarizations at the
ends of a linearly polarized beam is a manifestation of the
spin Hall effect for photons: the photons of opposite hel-
icities accumulate at the opposite ends of the beam just as
in the recently discovered spin Hall effect for carriers in
semiconductors [16,17]. It is interesting that this effect for
photons was predicted as early as 1965 in the paper of
Costa de Beauregard [4].

The change in the polarization structure along with the
splitting of a linearly polarized beam can be observed
experimentally by measuring the cross-polarized field
component of the reflected and refracted beam (i.e., Eay
and EaXa for m � 0 and 1, respectively). The intensity of
the cross component, being closely related to the de-
gree of the circular polarization, is equal to Iacross �
IajBaka�a�j2y2 / y2 exp��ImBay2�, where Ia �
jAaj2Sa2 exp��ImBay2� is the field intensity in the beam.
The relative cross-component intensity grows infinitely
with y: Iacross=I

a / y2. Figure 2 presents the distributions
of absolute and relative cross-component intensities in the
reflected beam. The beam splitting is easily visible, while
the angle corresponding to the maximum of the absolute
cross-component intensity visually coincides with the
angle associated with the maximum TS of the circularly
polarized beam [7]. A flip of the helicity [Fig. 2(a)] and a
singularity in the relative cross-component intensity in the
relative cross-component intensity [Fig. 2(e)] for m � 0
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FIG. 2 (color online). Intensity of the reflected beam’s
field (a),(b), and absolute (c),(d) as well as relative (e),(f ) in-
tensity of the cross-polarized component in the beam via the
transverse coordinate and incidence angle at different polariza-
tions of the initial beam [m � 0 for (a,c,e) and m � 1 for
(b,d,f)]. The signs of the elliptical polarizations at the different
sides of the beam are marked (a),(b). Parameters are: n2=n1 � 2,
�1;2 � 1, A�r� � 1, and k�1B�r� � i10�3 in the observation
point, which corresponds to the beam’s width about 10 wave-
lengths.
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occur at the Brewster angle where in-plane component
E�r�
X�r�

vanishes and changes its sign. With the characteristic
parameters of present-day optical polarizers and laser
beams, one can look forward to detect the cross component
like that in Fig. 2 and, hence, to register the spin Hall effect
of photons.

Conclusion.—We have solved the problem of reflection
and refraction of an electromagnetic polarized Gaussian
beam at the interface between two homogeneous media.
The transverse shifts of the centers of gravity for the
reflected and refracted beams have been calculated. In all
cases they satisfy the total angular momentum conserva-
tion law for beams, but in the generic case do not satisfy the
conservation laws for individual photons because of the
fundamentally two-channel character of the process and
the lack of ‘‘which path’’ information in classical electro-
dynamics. The field structure for the reflected and refracted
beams has been analyzed. An initially linearly polarized
beam splits into two circularly polarized beams shifted in
07390
opposite directions. This causes the rise of elliptical polar-
izations of opposite signs at the beam edges, i.e., the spin
Hall effect for photons. The effect can be detected by
measuring the split cross component of the scattered
beam’s field.
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