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We present a simple method for obtaining elastic scattering phase shifts and cross sections from precise
ab initio many-body perturbation theory energies of atoms in variable cavities. This method does not
require calculations of wave functions of continuum states, can be generalized to many atoms and ions,
and is extremely convenient because existing codes developed for energy calculations can be used without
modification. The high precision of the method and close agreement with experiment are illustrated on
examples of e-Ar and e-Kr scattering. Correlations as well as relativistic corrections are systematically

considered.
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Problems involving continuum states, which are encoun-
tered across many fields, including atomic, nuclear, mo-
lecular, and condensed-matter physics, and in a variety of
processes, such as scattering, photoionization, and impact
excitation, are often more difficult theoretically than those
involving discrete states. Because both types of states are
solutions of the same Schrodinger equation, it should be
possible to include correlations at the same level. A sub-
stantial obstacle for equal treatment is the difference in
boundary conditions, so in this Letter we explore the pos-
sibility of using the same boundary conditions. Moreover,
we propose a method that reduces the electron-scattering
problem to the problem of the discrete energies, which can
be accurately calculated using available computer codes.
Apart from the academic interest (where some textbooks
can benefit from its simplicity), this method can be of great
practical interest. As will be demonstrated in this Letter, it
opens possibilities for accurate ab initio calculations of
scattering cross sections. Below, several nontrivial issues
related to continuum problems will be addressed: (1) con-
tinuum problems can be accurately treated using quasicon-
tinuum states; (2) a desirable energy range can be covered
by variations of cavity radii; (3) the solution of the elastic
scattering problem can be reduced to the calculations of
discrete energies; (4) correlation effects can be accurately
accounted for with ab initio methods. Although some ideas
apply to a broad range of continuum problems, we will
concentrate on the elastic scattering cross sections that
have been accurately measured.

Conventional methods based on continuum wave func-
tions or R matrices [1] are not convenient for implementa-
tion with many-body perturbation theory (MBPT) [2],
large-scale configuration interaction (CI) [3], multiconfi-
guration Hartree-Fock (MCHF) [4], CI + MBPT [5,6], and
other accurate ab initio methods for atoms and ions with
strong correlations. The main reason is that complicated
existing codes have to be rewritten. For the MCHF method
this was done by Saha [7,8] to obtain ab initio elastic
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scattering cross sections in agreement with experiment.
The c1v3 code, which resembles small-scale MCHEF, was
used in R matrix calculations by Fon et al. [9,10]. Ab initio
MBPT methods were also applied [11,12].

In this Letter we propose and investigate a simple ap-
proach in which, by introducing a spherical cavity and
imposing specific boundary conditions at its radius, we
convert an electron-scattering problem into the problem
of finding discrete energies, which can be readily calcu-
lated with available codes developed for bound states.
There is some similarity with the R-matrix method, which
also introduces artificial boundary conditions, but the
method proposed here differs in many respects, is simpler,
and completely avoids modifications of atomic-structure
codes: (i) at the cavity radius, atomic and scattering elec-
tron’s wave functions are set to zero in the nonrelativistic
case, or the large component is set equal to the small
component in the relativistic case—the R-matrix method
deals with arbitrary values and derivatives at the boundary;
(i1) the region outside the cavity, which in the R-matrix
approach is necessary for computing S and K matrices, is
not needed; (iii) the Bloch L operator [13] is absent;
(iv) the cavity size is varied to scan scattering energies,
while in the R-matrix method it is fixed. As a result, in our
method standard numerical routines used to generate
Hartree-Fock (HF) or Dirac-HF (DHF) potentials,
B-spline  HF/DHF basis functions, and to calculate
MBPT energies can be applied immediately.

Continuum and quasicontinuum wave functions are
equivalent. For example, in Ref. [14] it was stated that
B-spline solutions obtained in a cavity can be interpreted as
a representation of true continuum states with different
normalization, and the energy of the quasicontinuum states
can be set to an arbitrary positive value by adjusting the
size of the cavity. There are also other methods that give
B-spline continuum wave functions at any energy: the
Galerkin method [15], the least squares approach [16,17],
and the free boundary condition approach [18]. The em-
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phasis in these works is placed on applications of B-splines
which are very often bundled with the cavity boundary
conditions: for the method proposed here, however, the
boundary conditions are more essential than B-splines,
which are still convenient for evaluation of radial integrals
in high-precision MBPT calculations [19].

While the proposed method can be justified mathemati-
cally in quite general assumptions, it is not yet obvious that
it will be accurate in practical calculations, so we will
illustrate the usefulness and accuracy of the method on
specific examples of calculations of e-Ar and e-Kr elastic
scattering phase shifts and cross sections. Energies of Ar~
and Kr™ ions in cavities for extraction of phase shifts will
be obtained using a set of MBPT subroutines. The MBPT
method provides sufficient accuracy for these ions and
allows systematic consideration of correlations; in addi-
tion, B-spline cavity-bound basis functions, used for evalu-
ation of MBPT terms, automatically impose necessary
boundary conditions. To obtain correct elastic scattering
cross sections it is essential to include effects beyond HF
approximation due to strong cancellations. The Brueckner-
orbital (BO) approximation, defined in Ref. [2] and also
referred to as the quasiparticle-orbital approximation in
Refs. [12,20], accurately treats these effects and results
with good precision. The accuracy can be further improved
with some other more accurate methods developed for
monovalent atoms. The calculations of phase shifts from
energies for other systems should also be possible and will
be undertaken in the future.

Apart from illustration purposes, the calculations will
serve to provide accurate ab initio cross sections for com-
parison with other theories and experiments and to improve
understanding of this particular system. In spite of the fact
that the history of experiments on electrons interacting
with gases is longer than a century [21], many questions
remain open and this area of research is still very active.
Elastic scattering of electrons on noble-gas atoms is of
particular interest since many precise measurements are
available providing tests for theories which, with a few
exceptions, are not all of the ab initio type and are based on
pseudopotentials. Although elaborate complicated semi-
empirical effective potentials have been developed to
achieve good accuracy, many calculations and measure-
ments are still in disagreement, and there is clearly signifi-
cant uncertainty in theoretical understanding. This
situation exist in almost all noble-gas atoms.

The method.—In general the partial wave expansion
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to phase shifts §;, so the main problem is to find phase
shifts. By definition, they can be extracted from asymptotic

behavior of radial wave functions P,(r) of a scattered
electron. The wave functions can be obtained by numerical
solution of the Schrodinger equation for a given energy
E =k?/2 as a parameter by using ab initio atomic-
structure methods such as MCHF [7,8] or MBPT [12].
Because wave functions are not always available in preci-
sion calculations and most codes output either energies or
matrix elements, the extraction of phase shifts from wave
functions is not very convenient. In our method phase shifts
are obtained from energies of an atom bound in a cavity,
which is a natural setting in MBPT calculations. The
extraction is possible because the cavity uniquely encodes
phase shift information into the energies of quasicontin-
uum states, and quasicontinuum wave functions are iden-
tical to true continuum wave functions if their energies are
the same. The last statement can easily be proven since the
continuum and quasicontinuum wave functions are both
unique solutions of the radial differential equation with the
same boundary condition at r — 0, the same energies,
although with different normalization conditions, and
maybe sign convention. The equivalence of quasicontin-
uum and continuum states was also stated in Ref. [14], and
we would like to note in passing that not only scattering but
also many other problems can be simplified and solved by
replacing continuum with quasicontinuum wave functions.
At large r, continuum and quasicontinuum solutions ap-
proach asymptotically the solution in an empty cavity
proportional to rj;(kr), where j,(x) are spherical Bessel
functions and k£ = \/Z_E, and the effect of the interaction
with an atom is given only in phase shifts. The phase shifts
can be determined from the asymptotic form of the wave
functions or from energies for a known cavity radius R as

al(En) =X — V2EnR (3)

Here x;, is the nth zero of the spherical Bessel function
Ji(x). For a given angular momentum [ the lowest quasi-
continuum energy has to be used with the first zero of the
corresponding spherical Bessel function, the next energy
with the second zero, etc. The formal proof of Eq. (3) and
its relativistic extension will be presented in a forthcoming
paper.

We calculate energies of quasicontinuum states in the
Brueckner-orbital approximation, which accounts for the
dominating part of the correlation. First, the DHF equation
is solved for a closed-shell atom (Ar or Kr). Then, in the
obtained DHF potential, the B-spline finite basis is gener-
ated. In this basis, the Hamiltonian matrix h;; = 9;;€; +

2,‘/'(80),
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is calculated and diagonalized to obtain BO energies. The
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summation runs over core states c¢, excited states »n, m, and
angular momenta k; the matrix elements are calculated
between all possible states i and j. The coupled radial
integrals X;(abcd) and Z,(abcd) are defined, for example,
in [22]. The self-energy matrix elements X;;(g,) depend
slowly on electron energy &,, which can be chosen to be
the energy of the lowest quasicontinuum state. The diago-
nalization is important because energy differences between
quasicontinuum states are small. Because of this, the
second-order energy is inaccurate as illustrated below.
One possible improvement for the current BO theory is
to take into account the screening of the Coulomb interac-
tion by the noble-gas electrons, which is more significant
in heavier atoms. Perturbation theory including the
screened Coulomb interaction provided an accuracy of
0.1% for Fr energy levels [23].

Relativistic effects can be also carefully considered, if
necessary. One such effect is the difference in energies
between fine-structure states, which for low-energy scat-
tering is small but becomes more pronounced at higher
energies. To avoid the Klein paradox [24] and the spurious
solutions observed in Ref. [25], the use of relativistic basis
requires so-called “bag” boundary conditions, P(R) =
Q(R), where P(r) and Q(r) are large and small components
of the radial Dirac wave function. The bag phase shifts can
be obtained if we compare energies generated in the empty
cavity with energies expected from the zeros of the spheri-
cal Bessel functions. At energies E < 2m,c?, the shifts

accurately follow the Pauli-expansion equation a+/E/2,
where « is the fine-structure constant. Below 20 eV, rela-
tivistic corrections are small. In some applications, such as
spin-flipping scattering, the relativistic effects are essential
and should be considered in detail, which we would like to
do in the future.

Calculations.—The results of our calculations for the
e-Ar elastic cross section are shown in Fig. 1. Close
agreement with experiment is achieved below 10 eV in
the BO approximation after including the partial waves [ =
2. To emphasize the importance of [ > 0 contributions in
Fig. 1 we also plot the BO s-wave cross section separately,
and in Fig. 2 we compare BO phase shifts from s, p, and d
waves with experiment. Contributions from higher-order
partial waves are much smaller and are neglected in this
work, but can be in principle included. At low energies, the
dominant contribution comes from s waves, which is ex-
pected; however, at energy about 0.36 eV, s wave sind
crosses zero, resulting in a minimum of the cross section.
In this region the p-wave and d-wave contributions be-
come particularly important and affect the shape of the
Ramsauer-Townsend minimum.

The phase shifts and cross sections obtained from
second-order energies, Eq. (4) before diagonalization,
and from BO energies, Eq. (4) after diagonalization, are
quite different (see Fig. 1), and the agreement is achieved
only after diagonalization. Using DHF energies and ignor-
ing excitation effects leads to very inaccurate cross sec-
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FIG. 1. Low-energy e-Ar cross sections. Comparison of vari-

ous theoretical approximations with experiment: solid line, BO
| = 2; dashed line, BO s wave; dotted line, second-order MBPT;
dash-dotted line, DHF. Experiments: Expt. 1, Ref. [30]; Expt. 2,
Ref. [27].

tions. The DHF scattering length is incorrectly positive and
independent of energy. This potential can be approximated
by a rigid sphere of the size of an argon atom, in accor-
dance with Pauli exclusion principle.

Because experiments at very low energy are difficult, we
also find the e-Ar scattering length by extrapolating our
results to zero energy, Ry .« = —1.47 £ 0.03 a.u. There
are several other calculations: —1.63 [26], —1.492 [27],
—1.449 [28], and —1.486 [8]. Our value disagrees only
with the value from Ref. [26].

Our theoretical e-Kr cross section is shown in Fig. 3. The
agreement with a pseudopotential theory [29] and experi-
ment in the considered energy range is close, although the
scatter is larger than in the case of Ar.

In conclusion, we proposed a simple method for calcu-
lations of phase shifts from energies of quasicontinuum
states and illustrated its high precision with MBPT calcu-
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FIG. 2. Comparison of our BO calculations (solid line) with
experiment [31] (points with error bars) for phase shifts of
electron scattering from argon.
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FIG. 3. Low-energy e-Kr cross sections. Solid line, our theory;
dashed line, pseudopotential calculations [29]. Experiments:
open circles with error bars, Ref. [30]; solid circles with error
bars, Ref. [32]; solid circles without error bars, Ref. [33].

lations. The method can be extended to many scattering
problems: scattering on various atoms and ions, positron
scattering, atom-atom scattering, etc.; however, in each
case some specific atomic-structure code has to be used
to achieve high precision.

The author is grateful to Dr. Kuzma for finding relevant
references and to Professor Happer for discussions on the
physics of electron scattering, for reading the manuscript,
and for suggestions for its improvement.
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