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Worm Algorithm for Continuous-Space Path Integral Monte Carlo Simulations
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We present a new approach to path integral Monte Carlo (PIMC) simulations based on the worm
algorithm, originally developed for lattice models and extended here to continuous-space many-body
systems. The scheme allows for efficient computation of thermodynamic properties, including winding
numbers and off-diagonal correlations, for systems of much greater size than that accessible to
conventional PIMC simulations. As an illustrative application of the method, we simulate the superfluid
transition of 4He in two dimensions.
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Over the past two decades, path integral Monte Carlo
(PIMC) simulations have played a major role in the theo-
retical investigation of quantum many-body systems, not
only by providing reliable quantitative results, but also by
shaping our current conceptual understanding, e.g., of the
relationship between superfluidity and Bose condensation.
At least for Bose systems, PIMC is the only presently
known method capable of furnishing in principle exact
numerical estimates of physical quantities, including the
superfluid density, and the condensate fraction [1].

As PIMC simulation is the most realistic option to
investigate ever more complex quantum many-body sys-
tems, the issue arises of overcoming its present limita-
tions. Aside from the notorious sign problem, the main
bottleneck of the current PIMC technology is inarguably
the maximum system size (i.e., number N of particles)
for which accurate estimates can be obtained in a reason-
able amount of computer time. Almost two decades
since the pioneering work of Pollock and Ceperley [2],
who simulated the superfluid transition in bulk liquid
4He on a system of N � 64 atoms, no further advance
has been made, despite a hundredfold increase in computer
speed [3].

For such quantities as energy and diagonal correlations,
one can often approach the thermodynamic limit (N ! 1),
by studying systems comprising as few as �30 particles.
However, accurate predictions of superfluid properties of
liquids (and solids [4]) require that the superfluid and
condensate fractions, �S and no, be computed for large
systems of significantly different sizes. In conventional
PIMC calculations, �S is obtained by means of the so-
called winding number estimator [2], which can only take
on a nonzero value if long permutation cycles of identical
particles occur in the system. Because the sampling fre-
quency for such cycles decreases exponentially with N,
ensuring the ergodicity of the algorithm becomes problem-
atic [5].
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This hurdle seems difficult to conquer within any
scheme formulated in the canonical ensemble, in which
the winding number is ‘‘topologically locked’’ in the
N ! 1 limit [1]. On the other hand, the same hurdle has
been completely overcome in quantum Monte Carlo simu-
lations of lattice models. A lattice path integral scheme
based on an alternative sampling approach, known as worm
algorithm (WA) [6], allows for efficient calculations of
winding numbers and one-particle Green function G, for
systems of as many as �106 particles [7]. A fundamental
aspect of the WA is that it operates in an extended configu-
rational space, containing both closed world-line configu-
rations (henceforth referred to as Z or diagonal con-
figurations), contributing to the partition function Z, as
well as configurations containing one open line (worm).
The latter configurations contribute to the one-particle
Green function; below, they are referred to as G (or, off-
diagonal) configurations. All topologically nontrivial mod-
ifications of world lines occur in the off-diagonal configu-
rational space, where there are no constraints; when the
sampling process generates a diagonal configuration, the
number of particles and the winding number are updated.

In this Letter, we describe the extension of the WA to the
PIMC simulation of quantum many-body systems in con-
tinuous space. Our novel PIMC implementation, while
based on the same theoretical underpinnings [8], differs
fundamentally from the ‘‘canonical’’ one [1], both in the
configuration space structure, as well as in the sampling
method. Since the number of continuous configuration
variables is no longer conserved, the new scheme neces-
sarily belongs to the generic domain of diagrammatic
Monte Carlo methods [9]. As an illustrative application
of this method, we simulate the superfluid transition in
liquid 4He in two dimensions (2D), for systems with up to
N � 2500 particles, i.e., 2 orders of magnitude larger than
in the most recent PIMC study [10]. In particular, we
observe a dramatic speedup in convergence of �s and G.
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We begin by reviewing conventional PIMC. One obtains
averages of physical quantities (at a temperature T) over a
set of many-particle configurations fRg, statistically
sampled from a probability density proportional to
��R;R;�� � hRje��ĤjRi, where � � 1=T (we set kB �
1) and Ĥ is the system Hamiltonian. The goal is achieved
by sampling discrete many-particle paths X �
�R1; R2; . . . ; RP�, periodic in the imaginary-time interval
� � P�, from the probability density

��X� � e�U�X�
YP
j�1

�o�Rj; Rj�1; �� (1)

where �o�Rj; Rj�1; �� �
QN
i�1 �o�rij; ri;j�1; �� is a product

of N free-particle propagators, whereas U incorporates
correlations, both in space and in imaginary time, arising
from interactions among particles. U is chosen so that, in
the �! 0 limit, the distribution of configurations R visited
by paths X reproduce ��R;R;��. Several choices are pos-
sible [1] for U, but our algorithm does not depend on its
particular form.

Equation (1) implies the following configuration space
structure: N single-particle paths (world lines), labeled i �
1; 2; . . . ; N, propagating in the discretized imaginary time t
from t0 � 0 to tP � �. Each world line is formed by P
successively linked ‘‘beads’’ labeled by the number of the
corresponding time slices j � 1; 2; . . . ; P. The jth bead of
the ith world line is positioned at rij. The � periodicity
implies that the (P� 1)th bead of each world line coin-
cides with the first bead of either the same, or another
world line.

The set of paths fXlg is sampled by a Metropolis random
walk through configuration space. In order to generate Xl�1

from the current path Xl, a local space-time modification of
Xl is proposed. The new path X� is then either accepted,
Xl�1 � X�, or rejected, Xl�1 � Xl, based on (1), according
to the standard procedure [11].

The basic update Xl ! X� consists of deforming one or
more randomly selected world lines, over a number 1 	
m 	 P of successive links. In order to incorporate effects
of quantum statistics, it is also crucial to allow groups of
1< n 	 N world lines to exchange: A modified portion of
a world line in the group will connect, m links later, to a
different world line, among the n selected. Note that the
number of world lines along X is always equal to N, in this
scheme. Updates with arbitrary exchange cycles ensure
ergodicity of the algorithm. Typically, however, the accep-
tance rate for permutations is frustratingly low, particularly
in the presence of repulsive interparticle potentials (e.g., in
condensed helium), rendering the calculation inefficient,
and impractical for large N.

The WA described here has the same starting point,
namely, Eq. (1), but with a crucial generalization of the
configuration space, which now includes both the above-
mentioned diagonal and off-diagonal paths, the latter cor-
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responding to the representation [analogous to Eq. (1)] of
the one-particle Matsubara Green function G�r; t�. Each
off-diagonal configuration contains a worm, that is, a
world line (on a � cylinder) with two ends—the ‘‘head’’
and the ‘‘tail’’—corresponding to the Green function an-
nihilation and creation operators, respectively. The two
special beads at the open world line ends are named (for
historical reasons) Ira (I) and Masha (M). Configurations
in which I and M are located in space-time at points
�rI ; tI � and �rM; tM� contribute to G�rI � rM; tI � tM�
with the weight defined in accordance with the generalized
equation (1).

The sampling of paths fXlg is implemented in WA
exclusively through a set of simple, local updates evolving
I (or, M) in space-time. The particle number becomes
configuration and time dependent (there is one less particle
between I and M, than in the rest of the path). In other
words, the WA opens up the possibility to work in the
grand canonical ensemble, with the chemical potential �
being an input parameter [12].

Next, we describe the set of ergodic local updates which
sample our extended configuration space, switching be-
tween the Z and G sectors. Updates which change the
number of continuous variables in X are arranged in com-
plementary pairs, satisfying detailed balance. General prin-
ciples of balancing complementary pairs can be found in
Ref. [9]. We have three pairs: open-close, insert-remove,
and advance-recede. Only the Swap update in the list below
does not fall in this category, because it preserves the
number of variables; i.e., it is self-complementary.
Naturally, all known standard tricks can be used, in order
to enhance performance.

(1a) Open.—This update is only possible if the configu-
ration is diagonal [13]. Aworld line (say the ith) and a bead
(say the jth) are selected at random. A random number
(m� 1) of beads, namely j� 1; j� 2; . . . ; j�m� 1 are
removed, so that a worm appears with I at (rij; tj) and M
at (ri;j�m; tj�m). Hence, the difference between the pro-
posed new path, X�, and the previous one, X, is that instead
of the ith world line there are now two new ones: The ith
world line (we retain the same label) now ends at the jth
bead (I) and the i0th world line (we introduce a new label)
corresponds to the piece of the original ith world line
starting from the (j�m)th bead (M). The acceptance
probability for this update is

Pop � min
�
1;
CNXP �me�U��m�

�o�rij; ri;j�m;m��

�
; (2)

where �U � U�X� �U�X��, NX is the number of world
lines (particles) in the diagonal configuration X, and
an arbitrary constant C controls the relative statistics of Z
and G sectors. The number �m<P defines the interval for
m: m 2 
1; �m�. In practice �m is adjusted to ensure the
desired acceptance rate. Because of the � periodicity,
without loss of generality we assume that whenever the
1-2



FIG. 1 (color online). Schematic illustration of swap move
described in the text. (a) before the move. (b) after the move.
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situation j�m> P occurs, the enumeration is shifted in
such a way that j�m 	 P, and no ambiguity occurs.
These definitions are common to all other moves described
below, in which m and �m enter.

(1b) Close.—This update is only possible if the configu-
ration is off-diagonal [13]. Let I be the jth bead of the ith
world line and M be the (j�m)th bead of the i0th world
line. If m> �m, the move is rejected. If m 	 �m, one pro-
poses to generate a piece of world line connecting I to M,
thereby rendering the configuration diagonal. The corre-
sponding spatial positions of new (m� 1) beads,
ri;j�1; . . . ; ri;j�m�1, are sampled from the product of m
free-particle propagators

Qm
��1 �o�ri;j���1; ri;j��; ��. The

probability of accepting the move is

Pcl � min
�
1;
�o�rij; ri;j�m;m��e�U��m�

CNX�P �m

�
: (3)

If the move is accepted, the label i0 is removed.
(2a) Insert.—The other way to create an off-diagonal

configuration from a diagonal one is to seed a new m-link
long open world line in vacuum. The number of links
m 	 �m and the position of M in space-time are selected
at random. The spatial positions of the other m beads
are generated from the product of m free-particle propa-
gators. The move is accepted with probability Pin �
minf1; CVP �me�U��m�g, where V is the system volume.

(2b) Remove.—The removal of the worm, i.e., the world
line connecting M to I , is attempted if its length (in the
�-periodic sense) is m 	 �m. (If m> �m, the proposal is
rejected [13].) The acceptance probability for the move is
Prm � minf1; e�U��m�=CVP �mg. We are in position now to
select C. A natural choice would be C � 1=VP �m, so that
the probability to open a worm of zero length is N=V �
G�0;�0�.

(3a) Advance.—This move advances I a random num-
berm of slices forward in time. It is similar to insert update
in implementation. The acceptance probability is Pad �
minf1; e�U��m�g. Note that it is possible for I to advance
past M.

(3b) Recede.—Now I moves backwards in time (in the
�-periodic sense) by erasing m consecutive links; the
number 1 	 m 	 �m is selected at random. The acceptance
rate is Pre � minf1; e�U��m�g. Ifm turns out to be equal or
larger than the total number of links between I and M
along the world line connecting them, the update is re-
jected [13].

(4) Swap.—Let I be positioned on the ith world line at
the jth time slice. (See Fig. 1.) Consider all the world lines
intersecting the (j� �m)th (in the �-periodic sense) time
slice and select one of them (labeled below with k) with the
probability Tk � �o�rij; rk;j� �m; �m��=�i where

�i �
X
l

�o�rij; rl;j� �m; �m�� (4)

is the normalization factor (if the selected world line con-
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tains M at the j0th time slice, such that j0 2 
j; j� �m�, the
move is rejected). A set of random positions
ri;j�1; . . . ; ri;j�m�1 is then generated as in the close move,
whereas the beads rk;j�1; . . . ; rk;j�m�1 are all erased. I is
shifted to rkj, while the world line i reconnects with the rest
of the world line k, which implies relabeling, as illustrated
in Fig. 1. The move is accepted with probability Psw �
minf1; e�U�i=�kg.

The Swap move generates all possible many-body per-
mutations through a chain of local single-particle updates.
Since no two particles need to be brought within a distance
of the order of the potential hard core, it enjoys a high
acceptance rate, similar to that for the advance-recede
procedures. It must be emphasized that in our algorithm,
unlike in conventional PIMC, arbitrary permutations of
identical particles, as well as macroscopic exchange cycles
appear automatically, if the physical conditions warrant
them. This is because the statistics of the relative positions
for the worm ends is given exactly by the Green function
G�r; t�.

As an illustrative application of the new method, we
present here simulation results of the superfluid transition
in 2D helium. Specifically, we have repeated the study first
carried out in Ref. [14], using the same interatomic poten-
tial [15] and at the same 2D density � � 0:0432 �A�2, but
on systems with a number of particles up to hundred times
larger. We used an approximation accurate up to �4 [16] for
the high-temperature density matrix [which determines the
structure of the functionU�X�], and extrapolated the results
to the �! 0 limit. For a given choice of �, the statistical
error of �s is comparable to that of the kinetic energy.

Figure 2 shows our results for the superfluid fraction
�S�T�, obtained on systems comprising different numbers
N of atoms. Using the procedure illustrated in Ref. [14],
based on Kosterlitz-Thouless theory [17], we have ob-
tained numerical fits to our data, in the critical temperature
range 0:65 K 	 T 	 0:8 K. Our estimates for the values of
the fitting parameter are d � 8:8� 0:5 �A for the vortex
core diameter, and E � 2:18� 0:04 K for the vortex en-
ergy, which lead to an estimate for the critical temperature
Tc � 0:653� 0:010 K, significantly different from the
1-3
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FIG. 2 (color online). Superfluid fraction �S�T� computed for
2D 4He on systems with different numbers N of 4He atoms. The
system density is � � 0:0432 �A�2. Dotted lines represent fits to
the numerical data (in the critical region) obtained using the
procedure illustrated in Ref. [14]. The leftmost dotted line is the
extrapolation to the infinite system. Open squares show results
obtained in Ref. [14] for the same system, with N � 25.
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previous result, 0:72� 0:02 K, deduced from the N � 25
data [14].

As mentioned above, our method gives easy access to
the imaginary-time one-particle Green function, and there-
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FIG. 3 (color online). One-particle density matrix computed
for 2D 4He at a density � � 0:0432 �A�2 for a system of
200 atoms, at T � 0:675 K (upper curve) and T � 1:0 K (lower
curve). Statistical errors on the curves are very small, and not
shown for clarity. In the inset we present data (on a log-log scale)
for the N � 2500 system at T � 0:675 K, with clear signatures
of the Kosterlitz-Thouless behavior in the vicinity of the critical
point.
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fore to the one-body density matrix. For 2D helium, this
quantity is expected to decay to zero at all temperatures,
following a slow power-law behavior for T 	 Tc. Typical
results obtained in this study, for systems with N � 200
and N � 2500, are shown in Fig. 3.

In conclusion, we have implemented a novel procedure
to perform large-scale PIMC simulations. Our scheme
extends to continuous space the worm algorithm previ-
ously developed for lattice systems, and affords efficient
computations of thermodynamic properties, including the
superfluid density and the single-particle Green function,
for a system of significantly larger size than accessible to
the existing PIMC technology.
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