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Topological Quantum Computing with Only One Mobile Quasiparticle
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In a topological quantum computer, universal quantum computation is performed by dragging quasi-
particle excitations of certain two dimensional systems around each other to form braids of their world
lines in 2� 1 dimensional space-time. In this Letter we show that any such quantum computation that can
be done by braiding n identical quasiparticles can also be done by moving a single quasiparticle around
n� 1 other identical quasiparticles whose positions remain fixed.

DOI: 10.1103/PhysRevLett.96.070503 PACS numbers: 03.67.Lx, 03.65.Vf, 03.67.Pp, 73.43.�f
τ1 τ2 τ3

τ1 τ−1
2 τ−1

3 τ2 τ1

FIG. 1 (color online). Braids on four strands. Top: The three
braid generators. Bottom: An arbitrary braid on four strands can
be made by multiplying together the generators and their inver-
ses. This braid shown here, �1�

�1
2 ��1

3 �2�1, is not a weave.
A remarkable recent theoretical advance in quantum
computation is the idea of topological computation [1–
7]. Using exotic two dimensional quantum systems, in-
cluding certain fractional quantum Hall states [8–10],
rotating Bose condensates [11], and certain spin systems
[12,13], it has been shown [1,2] that universal quantum
computations can be performed by simply dragging iden-
tical quasiparticle excitations around each other to form
particular braids in the quasiparticles’ world lines in 2� 1
dimensions. Because the resulting quantum gate operations
depend only on the topology of the braids formed by these
world lines, the computation is intrinsically protected from
decoherence due to small perturbations to the system.
Realization of such a topological quantum computer has
previously appeared prohibitively difficult in part because
one would have to be able to manipulate many quasipar-
ticles individually so as to braid them around each other in
arbitrary patterns. In this Letter we show that universal
quantum computation is possible using a very restricted
subset of braid topologies (‘‘weaves’’) where only a single
quasiparticle moves and all the other identical quasipar-
ticles remain stationary. This simplification may greatly
reduce the technological difficulty in realizing topological
quantum computation.

We note that there are several different proposed
schemes for topological quantum computation [1–5]. In
this Letter we focus on systems of the so-called Chern-
Simons-Witten type [2,6]. In these systems the topological
properties are described by a gauge group and a ‘‘level’’ k
which we write as a subscript. The cases of SU�2�k are
known to correspond to the properties of certain quantum
Hall states [8,9]. The SU�2�3 case, which is thought to have
been observed experimentally [8,10], is the simplest such
model capable of universal quantum computation [2] and is
very closely related to the Fibonacci anyon model, SO�3�3
[6,12]. It may also be possible to realize theories of this
type in rotating Bose condensates [11] and quantum spin
systems [12,13].

The braid group Bn on n strands is a group generated by
the (n� 1) elements �1 through �n�1 and their inverses. As
shown in Fig. 1, The generator �p switches the strand at
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position number p with the strand at position p� 1 in a
clockwise manner, whereas the inverse ��1

p switches these
strands in a counterclockwise manner (we count strand
positions from bottom to top). By multiplying these gen-
erators, any braid on n strands can be built (see Fig. 1).
Reading an expression left to right such as �3�2�

�1
3 means

one should do �3 first followed by �2 followed by ��1
3 . We

thus express a general braid as

�r�1�s�1��
r�2�
s�2��

r�3�
s�3� . . . �r�p�s�p� (1)

with p the total number of generators required to express
the braid. Here each s�i� takes a value in 1 . . . n� 1 and
each r�i� is either �1.

A subset of the braid group Bn is the set of all braids that
move only a single strand (the ‘‘warp’’ strand in the no-
menclature of weaving) around n� 1 stationary strands
(the ‘‘weft’’). We will call this subset weaves with n� 1
weft strands. An example of a weave is shown in Fig. 2. A
braid that is a nonweave is shown in Fig. 1.

In topological quantum computation, qubits are encoded
in clusters of quasiparticles. Dragging quasiparticles
around each other to form braids in 2� 1 dimensional
space-time performs quantum operations in the Hilbert
space of the system. Each braid generator corresponds to
a particular unitary operation, and performing one braid
followed by another corresponds to performing one quan-
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FIG. 3 (color online). Graphical proof that PWn�1, the pure
weaves with n� 1 weft strands, is a normal subgroup of PBn,
the pure braids with n strands. In the top we construct a pure
braid b on 5 strands followed by a pure weave w with 4 weft
strands [the warp strand is blue (dark gray)] followed by the pure
braid b�1. To see that the resulting braid bwb�1 is a pure weave,
we erase the warp strand as shown in the bottom. Since the
remaining braid is the identity, bwb�1 must have been a weave.

FIG. 2 (color online). The same weave with 3 weft strands
drawn two different ways. In both pictures the warp strand is
blue (dark gray) while the weft strands are red (light gray). In the
lower picture it is clear that the three weft strands remain
stationary.
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tum operation followed by another. In this way, compli-
cated gate operations can be built up from simple ones in
the same way that complicated braids are built from the
generators.

To build such a quantum computer it has previously been
thought that one would have to be able to control the
motion of n quasiparticles separately (with n proportional
to the number of qubits in the system) such that arbitrary
braids can be created. This amount of control of a (typi-
cally microscopic) quantum system is daunting technologi-
cally. To address this problem, in this work we will show
that the set of weaves is also sufficient to perform universal
quantum computation, and further that such a weaving
computer is ‘‘efficient’’ in the computational sense. This
result greatly simplifies the challenge of actually building a
topological quantum computer. Now, instead of having to
manipulate n quasiparticles, we need only fix the position
of n� 1 (weft) quasiparticles and control the motion of a
single (warp) quasiparticle.

By definition, in a topological quantum computer, any
quantum operation on the computational Hilbert space can
be approximated arbitrarily accurately with a braid [2]. We
will show (in part I below) that any quantum operation can
also be approximated arbitrarily accurately with a weave.
Then, given any braid on n quasiparticles made of p
generators [Eq. (1)] we show (in part II below) one way
to explicitly construct a weave that performs the same
quantum operation as the given braid to within any desired
accuracy �. Further we show that the particular weave we
construct is longer than the original braid by a factor of at
most Cnpj log��=�np��j� with C a constant depending on
the particular topological theory and � ’ 4. Thus we dem-
onstrate explicitly that our construction is computationally
efficient (since such polynomial and log increases are
acceptable for most quantum computational applications).

Part I: Dense Image of Pure Weaves. We define the
group PBn, known as the ‘‘pure braid group on n strands,’’
to be the subgroup of the braid group on n strands, Bn,
where each strand begins and ends in the same position. A
subgroup of the pure braids on n strands is the ‘‘pure
weaves’’ on n� 1 weft strands, PWn�1. These are analo-
gously the weaves on n� 1 weft strands where the warp
particle begins and ends at the bottom position.
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Given a group G with a subgroup H, we say that H is a
‘‘normal’’ subgroup ofG if for each g 2 G and h 2 H, we
have ghg�1 2 H. We now show that PWn�1 is a normal
subgroup of PBn. Choosing any pure braid b and any pure
weave w, we claim that bwb�1 is topologically equivalent
to a pure weave (See Fig. 3). To see that this is true, we
erase the warp strand as shown in Fig. 3, so b maps to a
pure braid b0 on n� 1 strands, w maps to the identity on
n� 1 strands, and b�1 maps to b0�1. Thus bwb�1 maps to
b0b0�1 meaning that we obtain the identity once we erase
the warp strand. This implies that the original braid bwb�1

must have been a pure weave, proving that the pure weaves
PWn�1 are a normal subgroup of the pure braids PBn.

We now consider a topological system with n identical
quasiparticles and a Hilbert space of dimension M. We
assume that the pure braids PBn have a dense image in
PU�M�. Here PU�M� � SU�M�=ZM. [The ZM subgroup
of SU�M� is generated by e2�i=M times the identity. Since
this is just an overall phase factor, it is irrelevant for
quantum computation.] The statement that PBn has a dense
image in PU�M� means essentially that given an element
a 2 PU�M� there exists a braid in PBn corresponding to
some element ~a 2 PU�M� in the Hilbert space whose
value is arbitrarily close to a. This statement is necessarily
true if one can do universal quantum computation with
quasiparticles of the theory (which is what we are assum-
ing). We note that for SU�2�k Chern-Simons-Witten theo-
ries it has been shown [2,14] that the pure braids on n
strands do indeed have a dense image in PU�M� for k > 2
and k � 4; 8 when n � 3, and for k > 2 and k � 4 when
n > 3.

Since the group PBn has a dense image in PU�M�, the
normal subgroup PWn�1 of PBn must then have an image
which is dense in some normal subgroup of PU�M�.
However, it is a well-known result [2] that PU�M� has no
normal subgroups except for the identity and the entire
group PU�M� itself. Since it is easy to show [15] that the
pure weaves PWn�1 do not all map to the identity, PWn�1

must also have a dense image in all of PU�M�. Thus we
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have shown that any quantum operation can be approxi-
mated arbitrarily accurately with a weave.

To be more precise about the key piece of this argument
we can state the following:

Lemma:—If a group H (such as PWn�1) is a normal
subgroup of G (such as PBn) and G is mapped by a group
homomorphism � densely into a compact topological
group T [such as PU�M�] then S � closure�image�H�� is
a normal subgroup of T.

Proof:—Assume S is not normal in T, so that there
must exist a t 2 T such that tSt�1 is some subgroup
S0 different from S. Since G is mapped densely into T,
there must exist a sequence of ti 2 T which converges
to t where each ti � ��gi� for some gi 2 G. The limit
of the sequence closure�image�giHg�1

i �� must then be
lim�ti�closure�image�H��t�1

i � � limtiSt�1
i � tSt�1 � S0.

But sinceH is normal inG, we must have giHg�1
i � H for

any gi so each element of the sequence must give S,
contradicting our assumption that S0 � S. (Q.E.D.)

Part II: Explicit Construction. Our construction is
based on the ‘‘injection weave’’ first discussed in Ref. [7].
This is a weave on three strands (two weft strands), ap-
proximating the identity operation on the Hilbert space,
which starts with the warp strand as the bottom of the three
strands and ends with the warp strand as the top of the three
strands. We can similarly define the inverse of the injection
weave which moves the warp from the top to the bottom of
the three strands.

The Kitaev-Solovay theorem [16] along with our above
Lemma [17] guarantee that for any system of Chern-
Simons-Witten type capable of topological quantum com-
putation it is possible to efficiently find an injection weave
of length Cj log�j� where � is a measure of the distance of
the resulting gate from the identity, � ’ 4, and C is a
constant depending on the particular topological theory
we are considering. Thus, with linearly increasing com-
plexity of the injection weave, the identity can be approxi-
mated exponentially more accurately [7,18].

In Ref. [7], examples of injection weaves were explicitly
constructed for Fibonacci anyons [2,6]. One such example
is shown in Fig. 4. [The same injection weave applies for
the elementary quasiparticles of the experimentally ob-
served [10] SU�2�3 system.] It is useful to think back to
the Fibonacci anyon case as a concrete example, although
our construction is much more general.
=

FIG. 4 (color online). An example of an injection weave for
the Fibonacci anyon model [SO�3�3 or SU�2�3]. This injection
was first discussed in Ref. [7] and approximates the identity
operation on the Hilbert space to better than one part in 102,
while transferring the warp quasiparticle from the bottom to the
top. Longer weaves will approximate the identity exponentially
more closely with the weave becoming longer only linearly
[7,16]. The box on the left establishes the notation used in
Fig. 5 below.
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We now consider multiple injections. Suppose the warp
is strand number m at a given point in time and we would
like to move the warp until it is strand number m� 2q
(with q an integer) without disturbing the state of the
system. We do this by repeating the injection weave

Mm;m�2q�

�
Im;m�2Im�2;m�4 . . .Im�2q�2;m�2q q>0
I�1
m�2;mI

�1
m�4;m�2 . . .I�1

m�2q;m�2q�2 q<0
: (2)

Here, Ia;a�2 is an injection weave acting on strands a, a�
1, and a� 2 where the warp starts at position a and ends at
position a� 2. Similarly, I�1

a�2;a is an injection acting on
strands a� 2, a� 1, and a which moves the warp from
position a to position a� 2. Thus, the multiple injection
Mm;m�2q moves the warp from position m to position m�
2q while performing only (approximately) the identity
operation on the Hilbert space. Note that Mm;m is defined
to be the identity, since no braiding is needed to move the
warp from position m to position m.

We consider an arbitrary braid expressed as in (1) above.
Starting with the warp on the bottom at position 1, we do
multiple injections until the warp is in a position to make
the first desired braid operation �r�1�s�1�. Defining �a�2 �
amod 2, our first step is then M1;s�1���s�1��2�1 which per-
forms (approximately) the identity on the Hilbert space,
but moves the warp an even number of strands over, plac-
ing it in position to do the desired �r�1�s�1�. After performing

�r�1�s�1�, the warp is occupying an even numbered position. We
then make multiple injections to move the warp to a
position where it can do the next braid operation �r�2�s�2�, after
which the warp occupies an odd number position again,
and so forth. Generally, let us define
I1;3 τ2 I2;4 I4;6τ5 τ4τ−2
3 I
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FIG. 5 (color online). We construct a weave (bottom) which
produces the same quantum operation on the Hilbert space as
some desired arbitrary braid (top). In the bottom, the shaded
boxes represent injection weaves which have (approximately) no
effect on the Hilbert space. This construction shows that, so long
as an injection weave exists, weaves are just as capable as braids
at performing efficient universal quantum computation.

3-3



P H Y S I C A L R E V I E W L E T T E R S week ending
24 FEBRUARY 2006
~M�i� �
�
Ms�i�1���s�i�1��2;s�i���s�i��2 even i
Ms�i�1���s�i�1��2�1;s�i���s�i��2�1 odd i

: (3)

Thus, defining s�0� � 0, we can write out the full weave
that performs the same quantum operation as the braid
written in expression (1) above

~M�1��r�1�s�1�
~M�2��r�2�s�2�

~M�3� . . . ~M�p��r�p�s�p�: (4)

Figure 5 shows this construction graphically. By construc-
tion, to the extent that ~M correctly performs the identity on
the Hilbert space, this weave performs the same operation
on the Hilbert space as any given braid in expression (1).
The constructed weave is longer than the given braid by no
more than np times the length of the needed injection
weave. Further, if we want to approximate the quantum
operation of the original braid to within some accuracy �,
each ~M need only be equal to the identity to within �=p.
Thus, each injection weave need only be equivalent to the
identity to within �=�np� which requires the injection to be
length Cj log��=�np��j�. Note that since the constant C is
determined entirely from the injection weave on three
strands, it is independent of n and p. Thus the total length
of the constructed weave need be no longer than
Cnpj log��=�np��j� as claimed. This length estimate
should be viewed as an upper bound and proof of principle.
In fact, we expect that weaves may be efficiently found
which are significantly shorter than those constructed here.
Nonetheless, the concept of injection can also be used to
design more practical weaves, as will be discussed in
forthcoming work.

Further Comments: In this Letter we have nowhere
discussed the initialization or readout steps required for
quantum computation. This is a difficult problem that has
not been satisfactorily answered anywhere in the literature
for this type of topological quantum computer. It has been
proposed that measurements and initialization could be
achieved in principle using interference experiments
[19,20], or by fusion of quasiparticles [1,2]. However, the
precise initialization and measurement schemes will de-
pend heavily on the particular nature of the realization of
the computer when it is built.
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