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Semiclassical Propagator of the Wigner Function
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Propagation of the Wigner function is studied on two levels of semiclassical propagation: one based on
the Van Vleck propagator, the other on phase-space path integration. Leading quantum corrections to the
classical Liouville propagator take the form of a time-dependent quantum spot. Its oscillatory structure
depends on whether the underlying classical flow is elliptic or hyperbolic. It can be interpreted as the
result of interference of a pair of classical trajectories, indicating how quantum coherences are to be
propagated semiclassically in phase space. The phase-space path-integral approach allows for a finer
resolution of the quantum spot in terms of Airy functions.
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Quantum propagation in phase space has always been
in the shadow of propagation in conventional (position,
momentum) representations. Yet it is superior in various
respects, particularly in the semiclassical realm: It avoids
all problems owing to projection, such as singularities at
caustics. Canonical invariance of all classical quantities
involved is manifest. Boundary conditions are imposed
consistently at a single (initial or final) time, thus remov-
ing the root-search problem and allowing for initial-
value representations. Semiclassical approximations to
the quantum-mechanical propagator have predominantly
been sought in the form of coherent-state path integrals [1–
3]. Closely related are Heller’s Gaussian wave-packet dy-
namics [4] and its modifications. By now, a broad choice of
phase-space propagation schemes is available which score
very well if compared to other semiclassical techniques.

Almost all of these developments refer to the propaga-
tion of wave functions in some Hilbert space. Less atten-
tion has been paid to the propagation of Wigner and
Husimi functions. They live in projective Hilbert space,
i.e., represent the density operator and are bilinear in the
wave function. Besides their popularity, they have a crucial
virtue in common: An extension to nonunitary time evolu-
tion is immediate. This opens access to a host of applica-
tions that combine complex quantum dynamics, where a
phase-space representation facilitates the comparison to
the corresponding classical motion, with decoherence or
dissipation: quantum optics and quantum chemistry, nano-
systems in biophysics and electronics, quantum measure-
ment and computation.

By the scales involved, many of them call for semiclas-
sical approximations. However, only few such studies ex-
ist, for specific systems predominantly in quantum chaos
[5], including dissipative systems [6,7]. By contrast,
Ref. [8] discusses a new method, Wigner-function propa-
gation analogous to the solution of classical Fokker-Planck
equations.

As a major challenge, any attempt to directly propagate
Wigner functions requires an appropriate treatment of
quantum coherences. As early as 1976, Heller [9] argued
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that the ‘‘dangerous cross terms,’’ i.e., the off-diagonal
elements of the density matrix, can give rise to a complete
failure of semiclassical propagation of the Wigner func-
tion. Quantum coherences are reflected in the Wigner
function as ‘‘sub-Planckian’’ oscillations [10]. They plague
semiclassical approximations by their small scale and by
propagating along paths that can deviate by any degree
from classical trajectories.

In this Letter, we point out how Heller’s objections are
resolved by considering pairs of trajectories as the basis of
semiclassical approximations and present corresponding
expressions for the propagator of the Wigner function.
The concept of trajectory pairs has been introduced in
the present context by Rios and Ozorio [11,12], working
in a strongly restricted space of semiclassical Wigner
functions. We here give a general derivation of the propa-
gator, independently of any initial or final states.

Moreover, we go beyond the level of approximations
based on stationary phase. Employing a phase-space path-
integral technique, we construct an improved semiclassical
Wigner propagator in terms of Airy functions. It resolves
all singularities and contains the semiclassical approxima-
tions based on trajectory pairs as a limiting case. The
interference patterns we obtain depend, up to scaling,
only on the nature of the underlying classical phase-space
flow—elliptic vs hyperbolic—and in this sense are uni-
versal. While living in projective Hilbert space, this result
is superior to Gaussian wave-packet propagation in that it
allows Gaussians to evolve into non-Gaussians.

In order to fix units and notations, define the Wigner
function corresponding to a density operator �̂ as W�r� �R
dfq0 exp��ip � q0=@�hq� q0=2j�̂jq� q0=2i, where r �
�p;q� is a vector in 2f-dimensional phase space. Its
time evolution is generated by a Hamiltonian Ĥ�p̂; q̂�
through the equation of motion �@=@t�W�r; t� � fH�r�;
W�r; t�gMoyal, involving the Weyl symbol H�r� of the
Hamiltonian Ĥ. The Moyal brackets f:; :gMoyal [13] con-
verge to the Poisson brackets for @! 0. As this equation of
motion is linear, the evolution of the Wigner function over
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a finite time can be expressed as an integral kernel
W�r00; t00� �

R
d2fr0G�r00; t00; r0; t0�W�r0; t0�, defining the

Wigner propagator G�r00; t00; r0; t0�. For autonomous
Hamiltonians, it induces a one-dimensional dynamical
group parametrized by t � t00 � t0 (in what follows, we
restrict ourselves to this case and use t as the only time
argument). This implies, in particular, the initial condition
G�r00; r0; 0� � ��r00�r0� and the composition rule
G�r00; r0; t� �

R
d2frG�r00; r; t� t0�G�r; r0; t0�.

The Wigner propagator can be expressed in terms of the
Weyl transform of the unitary time-evolution operator
U�r; t� �

R
dfq0 exp��ip �q0=@�hq�q0=2jÛ�t�jq�q0=2i,

called the Weyl propagator, as a convolution

G�r00; r0; t� �
Z
d2fRe�i=@�r

00�r0�^RU��~r�; t�U�~r�; t�; (1)

with ~r� 	 �r0 � r00 �R�=2. It serves as a suitable starting
point for a semiclassical approximation, invoking an ex-
pression for the Weyl propagator semiclassically equiva-
lent to the Van Vleck approximation [14,15],

U�r; t� � 2f
X
j

exp�iSj�r; t�=@� i�j�=2���������������������������������������
j det�Mj�r; t� � I�j

q : (2)

The sum includes all trajectories j connecting points r0j, r00j
in time t such that r � ~rj 	 �r0j � r00j �=2. Mj is the corre-
sponding stability matrix; �j is its Maslov index. The
action Sj�rj; t� � Aj�rj; t� �H�rj; t�t, with Aj the sym-
plectic area enclosed between the trajectory and the
straight line (chord) from r0j and r00j [14] (hashed areas
Aj� in Fig. 1).

Substituting Eq. (2) in Eq. (1) leads to a sum over pairs
j�, j� of trajectories whose respective chord centers ~rj�
are separated by the integration variable R. Otherwise, the
two trajectories are unrelated. A coupling between them, as
expected on classical grounds, comes about only upon
evaluating the R integral by stationary phase. Stationary
points are given by r00 � r0 � �r00j� � r0j� � r00j� � r0j��=2.
Together with the conditions for the two chords, r0 � r00 �
FIG. 1. The reduced action (shaded) of the Wigner propagator
in the Van Vleck approximation, Eq. (5), is the symplectic area
enclosed between the two classical trajectories rj��t� and the
two transverse vectors r0j� � r0j� and r00j� � r00j� (schematic
drawing). The solid central line is the classical trajectory
rcl�r0; t�; the broken line is the propagation path �rj�r0; t�.
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R � r0j� � r00j�, this implies

r 0 � �r0 	 1
2�r
0
j� � r0j��; r00 � �r00 	 1

2�r
00
j� � r00j��:

(3)

Stationary points are thus given by pairs of trajectories
such that the initial (final) argument of the propagator is in
the middle between their respective initial (final) points
[Fig. 2(b)]. This does not require them to be identical. They
do coincide as long as r0 and r00 are on the same trajectory
but bifurcate as r00 moves off the classical trajectory
rcl�r0; t� starting at r0, if the dynamics is not harmonic.

The resulting semiclassical approximation for the
Wigner propagator is (overdot indicating time derivative)

G�r00; r0; t� �
4f

hf
X
j

2 cos�Sj�r00; r0; t�=@� f�=2����������������������������������������
j det�Mj� �Mj��j

q ; (4)

Sj�r00;r0;t�� �~rj��~rj��^�r00 �r0��Sj��Sj�

�
Z t

0
ds
 _�rj�s�^Rj�s��Hj��rj���Hj��rj���;

(5)

with �rj�t� 	 �rj��t� � rj��t��=2, Rj�t� 	 rj��t� � rj��t�,
and Sj� 	 Aj��~rj�; t� �Hj��~rj�; t�t. The reduced action
Aj�

R
t
0ds _�rj�s�^Rj�s� is the symplectic area enclosed be-

tween the two trajectory sections and the vectors r0j� � r0j�
and r00j� � r00j� [Figs. 1 and 2(b)]. In general, Eq. (4), as a
function of r00, describes a distribution that extends from
the classical trajectory into the surrounding phase space,
forming a ‘‘quantum spot’’ [Fig. 3(b)] with a characteristic
FIG. 2 (color). (a) Classical building blocks entering the
Wigner propagator according to Eqs. (4) and (5), for a stable
trajectory starting at r0 � �0:636; 0� near the minimum of the
cubic potential V�q� � 0:329q3 � 0:69q. (b) Classical trajectory
rcl�r0; t� (black line), a pair of auxiliary trajectories rj��t� (green
lines), and the corresponding propagation path �rj�r0; t� (red
dashed line). The grid of auxiliary initial points r0j� around r0

(yellow) is parametrized by polar coordinates. Propagated clas-
sically over time t, it deforms into the turquoise pattern around
r00. The red/blue cone is formed by midpoints �r00j that correspond
to extrema/saddles of the action. Its boundaries form caustics
separating the region accessed by two midpoints �r00 from the
inaccessible rest. (c) Enlargement of the area around r00, indicat-
ing the number of trajectory pairs that access each region.
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FIG. 3 (color). Quantum spot replacing the classical delta
function on a stable (elliptic) trajectory near the minimum of a
cubic potential as shown in Fig. 2(a), at t � 1:8 (� � 2�=3).
(a) shows the exact quantum result for the Wigner propagator;
(b) and (c) are semiclassical approximations based on Eqs. (4)
and (9), respectively, all for @ � 0:01. Frames coincide with that
in Fig. 2(c). (d) Quantum spot, according to Eq. (4), for an
unstable classical trajectory near the maximum of the same
potential, at t � 1:0. Crosses mark the classical trajectory.
Color code ranges from red (negative) to blue (positive).
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oscillatory pattern that results from the interference of the
contributing classical trajectories. In general, it fills only a
sector with an opening angle <2� [Fig. 2(c)], where the
sum contains two trajectory pairs (four stationary points).
Outside this ‘‘illuminated area,’’ stationarity cannot be
fulfilled; that is, the ‘‘shadow region’’ is not accessible
even for mean paths �rj�t�. The border is formed by phase-
space caustics along which there is exactly one solution
(two stationary points). As r00 approaches the classical
trajectory rcl�r0; t�, from the illuminated sector, the two so-
lutions j� , j� coalesce so that Mj� ! Mj�, and Eq. (4)
becomes singular. If the potential is harmonic, all mean
paths coincide with rcl�r0; t�, and the classical Liouville
propagatorG�r00; r0; t� � ��r00 � r00cl�r

0; t�� is retained. In all
other cases, Eq. (4), though based on the Van Vleck propa-
gator, reflects the structure of stationary points of the action
including third-order terms, with one pair of extrema and
one pair of saddle points. It is formulated in terms of
canonically invariant quantities related to classical trajec-
tories and, thus, generalizes immediately to an arbitrary
number of degrees of freedom. The propagation of Wigner
functions defined semiclassically in terms of Lagrangian
manifolds [11] is contained in Eq. (4) as a special case.

We are now able to resolve Heller’s objections [9]: If the
two trajectories j� , j� are sufficiently separated and the
potential is sufficiently nonlinear, then (i) the propagation
path �r�r0; t� can differ arbitrarily from rcl�r0; t�, and (ii) the
phase factor in (4) exhibits sub-Planckian oscillations.
They would couple resonantly to corresponding features
in the initial Wigner function, generating a similar pattern
in the final Wigner function around the end point of the
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nonclassical propagation path. In this way, quantum coher-
ences are faithfully propagated within a semiclassical
approach.

Equations (4) and (5) translate into a straightforward
algorithm for the numerical calculation of the propagator
(Fig. 2): (i) Define a local grid (e.g., in polar coordinates)
around the initial argument r0 of the propagator, identifying
pairs of auxiliary initial points r0j�, r0j� with r0 in their
middle. (ii) Propagate trajectory pairs rj��t� classically,
keeping track of the symplectic area Aj between them.
(iii) Find the amplitude and phase contributed by each
trajectory pair and associate them to the final midpoints
�r00j . They constitute a deformed cone, projected onto phase
space [Fig. 2(c)]. Its ‘‘lower’’ (‘‘upper’’) surface [red (blue)
in Fig. 2(c)] corresponds to pairs of extrema (saddles) of
the action, respectively. (iv) Superpose the contributions of
the two surfaces, after smoothing amplitude and phase over
midpoints �r00j within each of them.

The caustics in Eq. (4) result from applying stationary-
phase integration in a situation where pairs of stationary
points can come arbitrarily close to one another. Since the
underlying Van Vleck propagator admits only up to qua-
dratic terms in the phase, we seek a superior approach,
corresponding to a uniform approximation. It is available
in the form of a path-integral representation of the Wigner
propagator [16], in close analogy to the Feynman path
integral,

G�r00; r0; t� �
1

hf
Z
Dr

Z
DRe�iS�frg;fRg�=@: (6)

Two paths, r�t� and R�t�, have to be integrated over. The
former is subject to boundary conditions r�0� � r0 and
r�t� � r00; the latter is free. The path action is

S�frg; fRg� �
Z t

0
ds
 _r�s� ^R�s� �H�r�s� �R�s�=2�

�H�r�s� �R�s�=2��: (7)

Equation (4) is recovered upon evaluating the path-
integral representation in a stationary-phase approxima-
tion: Defining r��t� 	 r�t� �R�t�=2, with boundary con-
ditions analogous to Eq. (3), and requiring stationarity
leads to the Hamilton equation of motion for r��t�: We
again find pairs of classical trajectories that straddle the
propagation path as stationary solutions.

We now include cubic terms in the action, with respect
to variations of the path variables. To keep technicalities at
a minimum, we restrict ourselves to a single degree of
freedom and to standard Hamiltonians H�p; q� � T�p� �
V�q�, where T�p� � p2=2m while the potential V�q� may
contain nonlinearities of arbitrary order. With this form,
H�r� coincides with the Hamiltonian function ‘‘quantized’’
by merely replacing operators with classical variables. As
the path integral readily allows one to treat time-dependent
potentials, chaotic motion remains within reach.

Expanding the action (7) around r�t� � rcl�r0; t� and
R�t� 	 �P�t�; Q�t�� � 0, there remain only linear terms
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in P and linear and cubic terms in Q. Evaluating the R
sector of the path integral thus results in an Airy spreading
of the propagator, with a rate V 000�qcl�t��, in the p direc-
tion. It is superposed to the classical phase-space flow
around the trajectory, i.e., rotation (shear) if it is ellip-
tic (hyperbolic). As a consequence, a spot of the full
phase-space dimension develops. Scaling � � ��; �� �
��1=4p;��1=4q�, with � � T00�pcl�=V 00�qcl�, we express
the linearized classical motion as a dimensionless map:

M���t�� �
cos��t� � sin��t�
sin��t� cos��t�

� �
: (8)

These maps form a group parametrized by the angle
��t� �

R
t
0 ds

�����������������������������������������
T00�pcl�s��V

00�qcl�s��
p

. It is real (imaginary)
if the linearized dynamics is elliptic (hyperbolic).

To evaluate the r sector of the path integral, we Fourier
transform the Wigner function ~W��� 	 �FW��
��� � �2���1

R
d2r exp��i� ^ r�W�r� and the propagator

accordingly, ~G � FGF�1. We get [�0 	 �	0; 
0�]

~G��00; �0; t� � ���00 �M��00��0� exp
�
�i
�
a30

3
	03

� a21	02
0 � a12	0
02 �
a03

3

03

��
: (9)

The coefficients ajk �
R
t
0 ds��s��sin��s��j�cos��s��k de-

pend on where along the classical trajectory how much
quantum spreading ��t� � ���t��3=4

@
2V 000�qcl�t��=8 is

picked up and thus on the specific system and initial
conditions. The Fourier transform from Eq. (9) back to
the original Wigner propagator can be done analytically,
after transforming the third-order polynomial in the phase
to a normal form [17].

The internal structure and the time evolution of the
quantum spot described by Eq. (9) are qualitatively differ-
ent for elliptic and hyperbolic classical trajectories (real
and imaginary�, respectively). In the elliptic case, the spot
is a periodic function of �. In particular, it collapses
approximately to a point whenever � � 2l�, l integer.
Close to these nodes, it shrinks and grows again along a
straight line in the p direction, reflecting the fact that for
short time, the quantum Airy spreading t1=3 outweighs
the classical rotation t. Only sufficiently far from the
nodes, while rotating around the trajectory by ��t�=2, the
one-dimensional distribution fans out into a two-
dimensional interference pattern formed as the overlap of
the bright (oscillatory) sides of two Airy functions, with a
sharp maximum on the classical trajectory [Fig. 3(b)]. In
comparison with the corresponding exact quantum-
mechanical result [Fig. 3(a)] for the quantum spot, ob-
tained by expanding the propagator in energy eigenstates
[18], the path-integral solution [Fig. 3(c)] resolves the
caustics far better than Eq. (4). The hyperbolic case is
obtained replacing trigonometric by the corresponding
hyperbolic functions. As a result, along unstable trajecto-
ries there are no periodic recurrences as in the elliptic case;
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the spot continues expanding in the unstable direction and
contracting in the stable direction [Fig. 3(d)]. Isolated
unstable periodic orbits embedded in a chaotic region of
phase space exhibit a degeneracy of the Weyl propagator
[14]. It allows one to account for scarring in terms of the
Wigner propagator [17].

We have obtained a consistent picture of incipient
quantum effects in the Wigner propagator, both in the
Van Vleck approach and in the path-integral formalism:
(i) For anharmonic potentials, the delta function on the
classical trajectory is replaced by a quantum spot extend-
ing into phase space; (ii) its structure shows a marked time
dependence, qualitatively different for elliptic and hyper-
bolic dynamics; (iii) it exhibits interference fringes arising
as a product of Airy functions; (iv) within each level of
semiclassical approximation used, the propagator retains
its dynamical-group structure. Open issues include: exten-
sion to higher dimensions and to higher-order terms in the
action, performance in the presence of tunneling, applica-
tion to unstable periodic orbits and implications for scars,
trace formulas, and spectral statistics, regularization of the
ballistic nonlinear � model, semiclassical propagation of
entanglement, and generalization to nonunitary time
evolution.
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