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Maximum Confidence Quantum Measurements
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We consider the problem of discriminating between states of a specified set with maximum confidence.
For a set of linearly independent states unambiguous discrimination is possible if we allow for the
possibility of an inconclusive result. For linearly dependent sets an analogous measurement is one which
allows us to be as confident as possible that when a given state is identified on the basis of the
measurement result, it is indeed the correct state.
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One of the problems in exploiting the capability of a
quantum system for carrying information is the difficulty
in extracting the information encoded in a quantum state. It
is not possible simply to measure the state of a quantum
system in a single shot measurement, as the state is not
itself an observable. Thus, without some prior knowledge,
the state cannot be determined with certainty and without
error. In fact, this is the case unless the state is known to be
one of a mutually orthogonal set. In quantum communica-
tions, however, the receiving party has to discriminate
between a known set of states f�̂ig with known prior
probabilities pi [1]. In general, the states will not be
orthogonal so that perfect discrimination is not possible,
and we have to settle for the best that can be done. This
means optimizing a figure of merit, with the simplest being
to minimize the probability of incorrectly identifying the
state. Necessary and sufficient conditions that the operators
describing this minimum error measurement must satisfy
are known [2,3], but the optimal measurement itself is
known only in certain special cases [3–8]. A second pos-
sibility, unambiguous discrimination, is possible between
two nonorthogonal states if we are prepared to accept the
possibility of an inconclusive result [9–11]. When the
inconclusive result is not obtained, it is possible to identify
the initial state with certainty. This strategy is optimized by
minimizing the probability of obtaining an inconclusive
result [12]. Unambiguous discrimination can be extended
to higher dimensions [13], but it is applicable only to sets
of linearly independent states [14]. Other figures of merit
include the mutual information shared by the transmitting
and receiving parties [15,16] and the fidelity between the
state received and one transmitted on the basis of the
measurement result [17,18]. Examples of optimal mini-
mum error, mutual information, and unambiguous dis-
crimination measurement strategies have been demon-
strated in experiments on optical polarization [19–24].

For linearly dependent states the analogue of unambig-
uous discrimination would be a measurement which allows
us to be as confident as possible that the state we infer from
our measurement result is the correct one. We take this
criterion as the basis of maximum confidence measure-
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ments. A related problem was considered by Kosut et al.
[25], who posed the question ‘‘if the detector declares that
a specific state is present, what is the probability of that
state actually being present?’’ That work used a worst-case
optimality criterion; i.e., it considered the measurement
that maximizes the smallest possible value of this proba-
bility for a given set of states. Here we consider the
construction of a measurement that achieves the maximum
possible value of this probability for each state in a set. In
order to do this we sometimes have to accept the possibility
of an inconclusive outcome, just as we need to for unam-
biguous discrimination.

Any measurement can be described mathematically by a
probability operator measure (POM) [4], also known as a
positive operator valued measure [26]. Each possible mea-
surement outcome !i is associated with a probability
operator, or POM element �̂i. In order to form a physically
realizable measurement, these elements must satisfy the
conditions

�̂ i � 0;
X
i

�̂i � Î: (1)

The probability of obtaining outcome !j as a result of
measurement on a system in state �̂ is given by Tr��̂�̂j�.

Suppose that a measurement is made on a quantum
system known to have been prepared in one of N possible
states f�̂ig, with associated a priori probabilities fpig.
Suppose further that the outcome of the measurement,
denoted !j, is taken to imply that the state of the system
was �̂j. No restrictions are placed on the number or inter-
pretation of other possible outcomes; for the moment we
are concerned only with outcome !j. How confident can
we be that this outcome leads us to correctly identify the
state prepared? The quantity of interest is the probability
that the prepared state was �̂j, given that the outcome !j

was obtained, that is, P��̂jj!j�. Using Bayes Rule we can
write

P��̂jj!j� �
P��̂j�P�!jj�̂j�

P�!j�
�
pj Tr��̂j�̂j�

Tr��̂�̂j�
; (2)
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FIG. 1. Bloch sphere representation of states. Any density
operator of a two-level system can be written �̂ � 1

2 �Î� r 
 �̂�
where r is a real 3 component vector, �̂ � ��̂x; �̂y; �̂z�, and
�̂x�yz� are the Pauli spin operators. By plotting the vector r, states
of a 2D complex system can be represented graphically in a 3D
real system. The signal states used in the example, as well as the
directions along which the POM elements lie are illustrated here.
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where �̂ �
P
ipi�̂i is the a priori density operator for the

system. By maximizing P��̂jj!j� with respect to the
probability operator �̂j, we can put a limit on how well
the state �̂j can be identified from the others in the set.

The process of maximizing P��̂jj!j� is greatly facili-
tated by means of the ansatz

�̂ j � cj�̂�1=2Q̂j�̂�1=2; (3)

where Q̂j is a positive, trace 1 operator, and thus the
weighting factor cj � 0 represents the probability of oc-
currence of outcome !j, P�!j�. Hence

P��̂jj!j� � pj Tr��̂�1=2�̂j�̂
�1=2Q̂j�

� pj Tr��̂j�̂
�1�Tr��̂0jQ̂j�; (4)

where �̂0j � �̂�1=2�̂j�̂
�1=2=Tr��̂j�̂

�1�. The operators �̂0j
and Q̂j are both positive, with unit trace, and can be
thought of as density operators. It follows, therefore, that
P��̂jj!j� is maximized if Q̂j is a projector onto the pure
state that has the largest overlap with �̂0j:

Q̂ j � j�0max
j ih�0max

j j; (5)

where j�0max
j i is the eigenket of �̂0j corresponding to the

largest eigenvalue �0max
j . The limit is then given by

�P��̂jj!j��max � pj Tr��̂j�̂
�1��0max

j (6)

and is realized by the POM element

�̂ j � cj�̂�1=2j�0max
j ih�0max

j j�̂�1=2: (7)

If the state �̂j is pure, then this simplifies to

�̂ j / �̂
�1�̂j�̂

�1: (8)

As multiplying the POM element by a constant has no
effect on the expression in Eq. (2), we have some freedom
in choosing the constants of proportionality, and each
choice will correspond to a distinct maximum confidence
strategy. In some cases it is possible to choose the cj such
that we can form a complete measurement from operators
independently optimized in this way. In other cases an
inconclusive outcome is necessary, and the constants may
be chosen, for example, to minimize the probability of
occurrence of the inconclusive outcome.

As an example we consider the case of three equiprob-
able (pi �

1
3 ; i � 0; 1; 2) symmetric qubit states that lie on

the same latitude of the Bloch sphere (see Fig. 1). For pure
states �̂ � j�ih�j, and we can describe our three states by
the kets

j�0i � cos�j0i � sin�j1i;

j�1i � cos�j0i � e2�i=3 sin�j1i;

j�2i � cos�j0i � e�2�i=3 sin�j1i;

(9)
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where j0i and j1i form an orthogonal basis for the qubit
and, without loss of generality, we set 0 	 � 	 �=4. For
this set of states �̂ � cos2�j0ih0j � sin2�j1ih1j, and the
maximum confidence POM elements are easily calculated
using Eq. (8) to be �̂i � aij�iih�ij (i � 0; 1; 2), where the
ai are positive constants and

j�0i � sin�j0i � cos�j1i;

j�1i � sin�j0i � e2�i=3 cos�j1i;

j�2i � sin�j0i � e�2�i=3 cos�j1i:

(10)

Our maximum confidence if outcome !j is obtained, that
is the maximum probability that the state identified is
correct, is the same for each possible outcome, and is
calculated from Eq. (6) to be

P��̂jj!j� �
2
3: (11)

The above elements do not form a POM for any choice of
the constants ai, and hence an inconclusive result is
needed. The POM element corresponding to the incon-
clusive outcome is given by �̂? � Î� �̂0 � �̂1 � �̂2,
with a probability of occurrence P�?� � Tr��̂�̂?� � 1�
2�a0 � a1 � a2�cos2�sin2�. Different choices give com-
peting maximum confidence strategies, and we need an
additional criterion to select the best of these. One way to
do this is to follow the example of unambiguous state
discrimination and to minimize P�?� subject to the con-
straint �̂? � 0. As P�?� is a monotonically decreasing
function of a0, a1, a2, the optimal values of these parame-
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ters lie on the boundary of the allowed domain, defined by
�̂? � 0. This leads us to choose a0, a1, a2 to be

a0 � a1 � a2 � �3cos2���1: (12)

The POM element corresponding to the inconclusive out-
come is then of the form

�̂ ? � �1� tan2��j0ih0j; (13)

which gives the inconclusive probability

P�?� � cos2�: (14)

For the purposes of comparison, we note that the mini-
mum error POM for this set of states is given by the square
root measurement [5,7], and can be written �̂ME

i �
2
3 j�

ME
i ih�

ME
i j where

j�ME
0 i �

1���
2
p �j0i � j1i�;

j�ME
1 i �

1���
2
p �j0i � e2�i=3j1i�;

j�ME
2 i �

1���
2
p �j0i � e�2�i=3j1i�:

(15)

If this measurement is performed and outcome !j is ob-
tained, then the probability that the state was, indeed, �̂j is
P��̂jj!j� �

1
3 �1� sin2��. This is plotted for comparison

purposes alongside the optimal value of 2
3 as a function of �

in Fig. 2. It can be seen that for all values of �, except
where the two strategies coincide at � � �

4 , the new mea-
surement strategy gives a greater confidence than that
found for the minimum error strategy.

Analytic expressions were given above for the operators
describing this new strategy for an arbitrary set of states
[Eqs. (7) and (8)]. In deriving these the ansatz in Eq. (3)
was used. The significance of this can be explained by
reference to some general transformation described by the
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FIG. 2. Comparison of the confidence in the state identified as
a result of measurement for minimum error (solid line) and
maximum confidence (dashed line) strategies. P��̂jj!j�, the
probability that the state identified on the basis of measurement
outcome !j is correct is plotted as a function of the parameter �.
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invertible operator Â, which transforms �̂! Â �̂ Ây.
Under this transformation, Eq. (2) becomes

P��̂jj!j� �
pj Tr�Â�̂jÂ

y�̂0
j�

Tr�Â �̂ Ây�̂0
j�

(16)

for some positive operator �̂0
j. It is clear that if we define

�̂0
j � �Â

y��1�̂jÂ
�1, this conditional probability is identi-

cal for the original system �̂ and the transformed system
Â �̂ Ây, under the action of the positive operators �̂j and
�̂0
j, respectively. Furthermore, as Â is invertible, this trans-

formation describes a one-to-one mapping between opera-
tors on the original and transformed systems. Thus, if the
operator achieving maximum confidence is known for one
system, it is easy to find that for the other system, simply by
applying the appropriate transformation. The advantage
of the transformation used in Eq. (3) is that the operator
�̂0
j / Q̂j which maximizes this figure of merit for the

transformed set f�̂0jg is easily found.
The type of transformation discussed above can be

realized as the result of a measurement associated with
the POM fÂyÂ; Î� ÂyÂg. Thus the measurement de-
scribed by the probability operators in Eq. (4) can be
viewed as a two-step process. In the first step, a measure-
ment is performed with outcomes !succ, !fail, and associ-
ated POM elements

�̂ succ �
psucc

D
�̂�1; �̂fail � Î� �̂succ; (17)

where D is the dimension of the state space of the system,
and psucc is the probability of occurrence of outcome!succ.
To ensure positivity of both �̂succ and �̂fail, psucc must
satisfy the condition 0 	 psucc 	 �iD for all i, where �i
are the eigenvalues of �̂.

When this step is performed, any given input state �j is
transformed to �̂0j, defined as above, with probability
psucc Tr��̂j�̂

�1�=D (corresponding to outcome !succ).
This measurement strategy does not require that the opera-
tors in Eq. (4) form a complete measurement, and if out-
come !fail is obtained, no further measurement is made,
and the result may be interpreted as inconclusive.

The information provided by knowledge of the measure-
ment outcome !succ also causes the associated probability
distribution to be modified as follows:

p0j � P��̂jj!succ� �
P��̂j�P�!succj�̂j�

P�!succ�
�
pj
D

Tr��̂j�̂
�1�:

(18)

It is easily verified that

X
i

p0i � 1;
X
i

p0i�̂
0
i �

1

D
Î � �̂0: (19)

Note that the operators which give maximum confidence
for this new set are immediately clear as the operator �̂0j
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describing any given state commutes with that describing
the other states in the set �̂0 � pj�̂0j. Thus, these two
operators are simultaneously diagonalizable. Also, as
�̂0 / Î, the same eigenvector corresponds to the largest
eigenvalue of �0j and the smallest eigenvalue of �̂0 �
pj�̂

0
j. The optimum probability operator �̂0

j is a projection
onto this eigenvector [Eq. (5)].

The measurement described by operators f�̂0
j �

cjD
psucc

Q̂jg

is thus the second step in the process. The probability of
obtaining result !j when the system is in any given input
state �̂i can be written

P�!jj�̂i� � P�!succj�̂i�P�!jj!succ; �̂i�

�
psucc Tr��̂i�̂

�1�

D
Tr
�
�̂0i
cjD

psucc
Q̂j

�

� Tr��̂icj�̂
�1=2Q̂j�̂

�1=2� � Tr��̂i�̂j�: (20)

Thus this two-step process is equivalent to the single step
measurement described by probability operators
f�̂j; �̂failg. From the discussion above we know that Q̂j

is a projector onto the eigenstate of �̂0j with the largest
eigenvalue. For pure states, as Q̂j � �̂0j, it is possible to
choose the constants of proportionality such that �̂0

j �

p0jD�̂
0
j, and these probability operators form a complete

measurement. For mixed states this is not possible, and the
inconclusive outcome will have an additional component.
Thus, for pure states the entire process may be interpreted
as a projection of the initial states f�̂ig to the transformed
set f�̂0ig, followed by a measurement along these states.

What are the properties of the transformed set? As �̂0 �
1
D Î, the states span the entire state space. They are ‘‘maxi-
mally orthogonal’’ in the sense that the pure state with
which any given state �0j has the largest overlap is also that
with which the average of the remaining states �̂0 � p0j�̂

0
j

has the smallest overlap. In particular, for linearly inde-
pendent sets, for which this strategy coincides with that of
unambiguous discrimination, the initial states are projected
onto mutually orthogonal states between which perfect
discrimination is possible. This is exactly the way in which
unambiguous discrimination between two nonorthogonal
states has been realized experimentally [21,22]. For line-
arly dependent sets, the above may be made clearer by
reference to a qubit system. The property �̂0 � 1

2 Î means
that the 3D vector representing the state �̂0j on the Bloch
sphere points in the opposite direction to that representing
�̂0 � p0j�̂

0
j.

Thus, we have constructed a measurement which allows
us to be as confident as possible that when a measurement
outcome leads us to identify a particular state, that state
was indeed present. As different outcomes are treated
independently, an inconclusive outcome is sometimes nec-
essary in order to form a physically realizable measure-
07040
ment. We have given analytic expressions for the operators
describing this optimal measurement for an arbitrary set of
initial states, and have interpreted these expressions in
terms of a two-step measurement process. We have illus-
trated the new strategy by means of an example, and shown
that for the set of states considered, when a state is iden-
tified, the probability that it was actually present is im-
proved over the minimum error strategy. This strategy is
analogous to unambiguous discrimination, but is appli-
cable to linearly dependent states. We plan to demonstrate
this strategy experimentally for the example considered
here using optical polarization.
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