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We analyze the behavior of the U.S. S&P 500 index from 1984 to 1995, and characterize the non-
Gaussian probability density functions (PDF) of the log returns. The temporal dependence of fat tails in
the PDF of a ten-minute log return shows a gradual, systematic increase in the probability of the
appearance of large increments on approaching black Monday in October 1987, reminiscent of parameter
tuning towards criticality. On the occurrence of the black Monday crash, this culminates in an abrupt
transition of the scale dependence of the non-Gaussian PDF towards scale-invariance characteristic of
critical behavior. These facts suggest the need for revisiting the turbulent cascade paradigm recently
proposed for modeling the underlying dynamics of the financial index, to account for time varying—

phase transitionlike and scale invariant—critical-like behavior.
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Recently, it has been suggested that some economic
phenomena can be explained by a general theory of a
complex system comprising a large number of intercon-
nected and interacting components [1]. In economics re-
search, an important and challenging problem is to
understand the dynamics of market crashes and to evaluate
risk in the market. In recent works [2], similarities between
the market crash and a phase transition, and market crashes
as critical point phenomena have been exposed. Indeed, the
behavior of stock-price fluctuations can be modeled by the
Ising model and its critical dynamics—a thoroughly
studied phenomenon in the field of statistical physics [3].
However, to date there has been no convincing demonstra-
tion of the criticality of the market crashes. On the con-
trary, a parallel of the financial market with the cascade
model developed for hydrodynamic turbulence has been
proposed [4,5].

In this Letter, we provide the first comprehensive evi-
dence of the occurrence of a phase transition and critical
behavior in the dynamics of a financial index. In particular,
by analyzing the temporal evolution of the non-Gaussian
behavior of the index dynamics, we demonstrate:
(1) Strongly non-Gaussian behavior of the logarithmic
returns of the U.S. S&P 500 index in the critical regime;
(2) scale-invariant behavior (data collapse) of the PDF
function in the critical regime; (3) a departure from the
critical regime in the dynamical phase transition scenario.
The critical regimes found coincide with the vicinity of the
large index movements, consistent with the high probabil-
ity of multiscale events at the critical point of a second
order phase transition. From the observed non-Gaussian
behavior of the index, we numerically estimate the unex-
pectedly high probability of a large price change in the
critical regime. This probability estimate is of importance
for risk analysis and a central issue for the understanding of
the statistics of price changes. Further, by analyzing the
dynamical temporal evolution of the critical regime, we
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demonstrate as an empirical fact that a precursor of the
October 1987 crash can be observed in the fluctuations on a
relatively short time scale ~10 min. Finally, our results
suggest that there exist systems in which non-Gaussian
properties are time dependent, in addition to scale depen-
dence previously observed for hydrodynamic turbulence
[6]. In particular, we demonstrate that the validity of the
cascade model is questionable in the critical regime, where
the analogy with critical phenomena is more adequate.
Figure 1 shows the S&P 500 index Z(¢) from 1984 to
1996 on a semilog scale, and the inset shows time series of
the 10 min log return, i.e., G,(t) = InZ(¢ + s) — InZ(¢),
where s = 10 min. Here, we investigate the probability
density function (PDF) of the detrended log returns on
different time scales. To remove the trends present in the
time scales {x(#)}, where x(¢) = InZ(¢), in each subinterval
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FIG. 1. Semilog plot of the S&P 500 index time series over the

period 1984-1995. Inset: the 10 min log returns of the S&P 500
index in region C, where the origin of time is defined as the
opening time on black Monday, 19 October 1987. The gray
region corresponds to the black Monday.
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FIG. 2 (color online).

702
s [min]

70°

Continuous deformation of increment PDF’s across scales. Standardized PDF’s on scales (from top to bottom)

s =8, 16,32, 64, 128,256, 512, 1024, 2048, 4096 min: (a) The S&P 500 index time series over the period 1984 —-1995 except for 1987,
1988, 1990, and 1991 in which particular effects of the black Monday crash and Gulf War were eliminated. The scale dependence of
the fitting parameter of Castaing’s equation A2 vs logs (b) and logA? vs logs (inset). (c) Magnitude correlation functions,
CY(7)/C¥)(0) for s = 10, 20,40 min in log-lin and log-log (inset) coordinates.

[1+ s(k— 1), s(k + 1)] of length 2s, where k is the index
of the subinterval, we fit x(¢) using a linear function, which
represents the exponential trend of the original index in the
corresponding time window. After this detrending proce-
dure, we define detrended log returns on a scale s as
AZ(t) = x*(t + s) — x*(t), where 1 +s(k— 1) =1 = sk
and x*(7) is a deviation from the fitting function [7].

It has been demonstrated that a non-Gaussian PDF with
fat tails can be modeled by random multiplicative pro-
cesses [8—13]. For instance, let us assume phenomenolog-
ically that the increment is represented by the following
multiplicative form:

AZ(t) = &,(D)e®s, (1)

where &, and w, are both Gaussian random variables with
zero mean and variance o2 and A2, respectively, and inde-
pendent of each other. The PDF of A Z has fat tails
depending on the variance of w,, and is expressed by

! G,(Ino)d(Ino),

P2 = [F(%F)
o )o
where F (&,) and G,(w,) are both Gaussian with zero
mean and variance o2 and A2, respectively. In this case,
P (A,Z) is referred to as Castaing’s equation, and con-
verges to a Gaussian when A — 0. Although Eq. (2) is
equivalent to that for a log-normal cascade model origi-
nally introduced to study fully developed turbulence [8], it
approximately describes non-Gaussian PDF’s observed not
only in hydrodynamic turbulence, but also in a wide range
of systems in nature, such as foreign exchange markets [4]
and heartbeat interval fluctuations [7].

For a quantitative comparison, we fit the data (one-year
long intervals) to the above function [Eq. (2)], as illustrated
in Fig. 2(a), and estimate the variance A? of G,(w) [8]. As
shown in Fig. 2(b) the average standardized (variance set to
one) PDF’s of the detrended log returns show the existence
of a scaling law [14] in the behavior of A? as a function of

2

s, rather than logarithmic decay characteristic of classical
cascade processes [5,8,15]. In the studies of hydrodynamic
turbulence, a scaling law of A has also been observed
[8,15] followed by the observation of the departure from
the Kolmogorov-Obukhov cascade picture as a possible
consequence of a finite scaling range associated with lower
Reynolds numbers [16]. It is thus tempting to explore from
this perspective the analogy between the financial market
and hydrodynamic turbulence which has previously been
suggested in Refs. [4,5].

To this end, it is important to quantify the correlation
properties of w, in Eq. (1). Strong correlations of wy,
known as volatility clustering, suggest that the non-
Gaussian PDF results from heterogeneous and clustered
behavior of the local variance of fluctuations. To test
magnitude correlations [6,17], we define the local variance
and its magnitude at a scale s, as

1 nx/2
o(t) = — Z AZ(t + kA1),

S k=—ng/2

(3)
and

N )
& ,(i) = 5 logaR (), @
respectively, where At is the sampling time interval and
ng = s/At. We evaluate the correlation properties of w in
Eq. (1) using the magnitude correlation function of @, as
defined by

CO(r) = ((@,(1) — (@)@t + ) — (@], (5)

where (-) denotes a statistical average. As shown in
Fig. 2(c), the magnitude of stock market fluctuations is
long-range correlated. Although we observe power law
decay of the magnitude correlations Fig. 2 [inset of (c)],
the correlation decay is not scale invariant, see Fig. 4(f),
contrary to what has been established in fully developed
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turbulence. This effect introduces another challenge for the
applicability of the cascade scenario for modeling the
financial market and makes the analogy to hydrodynamic
turbulence somewhat questionable.

In the following, we identify a temporal region of com-
plete departure from the cascade scenario in an instance of
the critical-like behavior. We evaluate (in sliding time
intervals [T — AT/2, T + AT/2]) the temporal depen-
dence of the A%. The local temporal variation of A%, .
over a one-year period before the black Monday crash in
1987 shows a gradual, systematic increase on approaching
the crash date [Fig. 3(a)].

To date, the volatility of stock-price changes has been
used as a measure of how much the market is liable to
fluctuate, which is of interest to traders because it quanti-
fies the risk, and it is the key input in the option pricing
model by Black and Scholes [18]. For this reason, the
statistical properties of volatility have been intensely
studied by economists, and recently by physicists [19].
However, it is impossible to explain the occurrence of
extremely large fluctuations by estimating only volatility.

We argue that it may be beneficial for risk analysis to
quantify the non-Gaussian nature of (detrended) price
fluctuations on a relatively short time scale (~10 min),
not only volatility at larger time scales. An important point
is that the large value of A? indicates a high probability of a
large price change; this probability follows a sharp increase
with growing A2, as shown in Fig. 3(a). Figure 3(a) shows
the probability of a large change, greater than 105, where
7 is the average of o i, Of the standard deviation of the
whole data set of detrended log returns at a 10 min reso-
lution. The probability is numerically estimated from the
approximated PDF from Eq. (2) and the parameter values
of 1 min and A%, . [Fig. 3(b)].

Because the probability of the occurrence of extremely
large fluctuations shows a sharp increase before black
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FIG. 3 (color online). (a) (circles) The temporal dependence of
the A% over a one-year time span (~5 X 10* data points at
sampling intervals at Af=2 min in [T —A/2, T+ A/2],
where AT = 1 year) of index evolution. (squares) The probabil-
ity of a large change, greater than 104, where & is the average of
standard deviation o of log-returns over the period 1984-1995,
and the probability is numerically estimated from the value of A2
and o. The left, gray region contains black Monday in
October 1987. (b) The A% dependence of the probability of the
appearance of large increments.

Monday in October 1987 [Fig. 3(a)], our observations
suggest that, through the internal dynamics, the system
gradually approaches a critical point where inherent, multi-
scale fluctuations are likely to result in a crash. Indeed, an
abrupt transition and a qualitative change in the behavior of
A2 scaling occur in the period including the black Monday
crash—the critical regime—and outside of it, as shown in
Figs. 4(a) and 4(b). This transition is reminiscent of a
dynamic phase transition, and the increase in the A> and
the associated, strongly non-Gaussian behavior are accom-
panied by the emergence of the scalewise invariance of the
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FIG. 4 (color). (a) The temporal and scale dependence of A2,
where the A? is estimated for each two-month term (~2 X 10*
data points at sampling intervals at Ar =1 min). The color
scales represent values of A2. The terms in region C include data
of black Monday in October 1987. (b) The scale dependence of
A2. Red lines correspond to the results in region C of (a). The
data before black Monday (disjoint from region C) is represented
by green lines. (c),(d) Continuous deformation of increment
PDF’s across scales: (c) A quarter of the year before black
Monday; (d) A quarter including black Monday. Standardized
PDF’s on scales (from top to bottom) s = 8, 16, 32, 64, 128,
256,512, 1024, 2048. In the solid line, we have superimposed
the approximated PDF based on Castaing’s equation Eq. (2).
(e) “Data collapse” from a quarter of the year including black
Monday as in (d) in lin-log and log-log coordinates (inset).
(f) Magnitude correlation functions, C®(7)/C®)(0) correspond-
ing to (c) (green), and (d) (red), for s = 10, 60, 180 min.
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corresponding multiscale PDF function (data collapse):
surprisingly, the PDF’s do not show a convergence to the
Gaussian across a wide range of scales [Figs. 4(d) and
4(e)], although the PDF’s before the black Monday crash
in 1987 obviously show a convergence to the Gaussian
[Fig. 4(c)].

The data collapse [Fig. 4(e)] of the non-Gaussian PDF
corresponds with the nearly constant A% [Fig. 4(b)]. Such
scale invariance of the non-Gaussian PDF—a character-
istic feature observed at a critical point—is not accounted
for by the cascade model. This scale invariance suggests
breaking of the law of large numbers and reflects persistent
multiscale correlations at criticality, with large fluctuations
at a longer time scale, likely induced by fluctuations at a
shorter time scale. Indeed, the magnitude correlations
show a substantial increase in the critical regime as com-
pared with the period before it [Fig. 4(f)]—this increase is
more pronounced for larger time scales—indicating
propagation of the heterogeneity and clustering of the local
variances across scales.

After the black Monday crash in 1987, another increase
of A2 and o, is observed before 1990, although a crash
transition is not observed. It is well known that Iraq’s
attack on Kuwait, which began in August 1990, and the
Persian Gulf War (1991) led to declining and sluggish
stock prices (see Fig. 1). Our findings might suggest that
the market was approaching a “critical’” state with a high
probability of occurrence of extremely large fluctuations
before Iraq’s attack, but the external factor of the war
brought about a radical change in the internal dynamics
of the stock market, and a transition like in Figs. 4(a) and
4(b) for black Monday did not occur.

To summarize, we have characterized the non-Gaussian
nature of the detrended log returns of the U.S. S&P 500
index from 1984 to 1995 by introducing a simple multi-
plicative model, and have found the empirical fact that the
temporal dependence of fat tails in the PDF shows a grad-
ual, systematic increase in the probability of the appear-
ance of large increments on approaching black Monday in
October 1987. Our findings suggest the importance of the
non-Gaussian nature at a short time scale (~10 min) for
risk analysis—if the same characteristics can be observed
in other stock indices, our approach may be applicable to
quantitative risk evaluation. In addition, we observe an
abrupt transition of the non-Gaussian PDF to scale in-
variant behavior when the black Monday crash occurs,
which supports a recently proposed interpretation that the
black Monday crash was triggered by a critical phenome-
non. Thus, one possible explanation of the black Monday
crash might be that highly clustered behavior of traders
was induced by large fluctuations at a short time scale
(~10 min ), and rapidly grew through internal interactions
in the stock market. Our observations contrast with the
scope of the cascade model previously proposed for the
explanation of the internal dynamics of the financial mar-

ket—in particular the scale invariance observed in the
critical regime cannot be accounted for by the cascade
model—and implies the need for a generalization capable
of modeling financial index dynamics and other complex
phenomena [7,17].
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