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Mapping the Monte Carlo Scheme to Langevin Dynamics: A Fokker-Planck Approach
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We propose a general method of using the Fokker-Planck equation (FPE) to link the Monte Carlo (MC)
and the Langevin micromagnetic schemes. We derive the drift and diffusion FPE terms corresponding to
the MC method and show that it is analytically equivalent to the stochastic Landau-Lifshitz-Gilbert (LLG)
equation of Langevin-based micromagnetics. Subsequent results such as the time-quantification factor for
the Metropolis MC method can be rigorously derived from this mapping equivalence. The validity of the
mapping is shown by the close numerical convergence between the MC method and the LLG equation for
the case of a single magnetic particle as well as interacting arrays of particles. We also find that our
Metropolis MC method is accurate for a large range of damping factors �, unlike previous time-quantified
MC methods which break down at low �, where precessional motion dominates.
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With the rapid advance of computing resources,
Monte Carlo (MC) methods have become a powerful tool
in many fields, ranging from the physical sciences to fi-
nance and sociology [1–3]. The flexibility of Monte Carlo
methods is due to its abstract formalism, which can be
realized in an almost infinite number of ways. Increasingly,
MC methods are being implemented in the stochastic
micromagnetic modeling of magnetic nanostructures [4].
Stochastic micromagnetic modeling has important practi-
cal implications, e.g., in predicting the storage lifetime of
hard-disk magnetic media [5,6]. Traditionally, the dynam-
ics of magnetic moments are also modeled in the Langevin
scheme, using the stochastic Landau-Lifshitz-Gilbert
(LLG) equation [7]. Langevin-based micromagnetics con-
stitutes a formidable computational method, because of its
ease of use and close correspondence to actual experimen-
tal data in previous literatures [8]. However, it has certain
limitations which may be overcome by MC methods. For
instance, MC methods can accommodate the long-time
magnetization relaxation dynamics of large-scale arrays
of magnetic grains [9–11], which is practically unfeasible
to be modeled using the stochastic LLG equation. On the
other hand, MC schemes have the drawback of having its
time calibrated in MC steps, instead of in physical time
units. Thus, both MC schemes and the Langevin approach
are useful computational methods in micromagnetics, with
complementary strengths and drawbacks. Hence, it is very
important to devise a general way of mapping one method
to the other, and vice versa.

Early efforts to link MC methods to LLG equations were
done by Nowak et al. [12]. They focused on deriving a
time-quantification factor to relate one MC step to real
physical time unit used in the LLG equation. Recently, we
also proposed another time-quantifiable MC method which
involves the determination of macroscopic density of
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states, and the use of the master equation for time evolu-
tion. This method is applicable in simulating extremely
long-time magnetization reversal process [13]. The effect
of precession on Nowak’s time quantification was inves-
tigated by Chubykalo et al. [14]. They concluded that
Nowak’s time quantification of the MC method breaks
down in the low damping case, in presence of an oblique
external field, due to the influence of (athermal) preces-
sional motion.

In this Letter, our approach is more thorough and fun-
damentally different from all previous works. We propose
a systematic way of using the Fokker-Planck equation
(FPE) to map MC methods to the LLG dynamical equa-
tion. The physical background of using FPE to describe
stochastic dynamics has been well established [15], e.g., in
the case of a particle under the influence of a one-
dimensional potential [16]. The outline of our scheme is
as follows. We consider a single isolated particle and then
generalize to an interacting array of particles. First, we
develop a MC method that has the stochastic dynamics of
the LLG equation. This method is a hybrid Metropolis MC
scheme, which combines the random displacement of spins
about a cone and a suitably sized precessional step. The
random displacement models the thermal fluctuation, and
the precessional step accounts for the precessional term in
the LLG equation. From the drift-diffusion picture of the
general Fokker-Planck (FP) equation, we can then obtain
the FP coefficients of this hybrid Metropolis MC method,
and compare them with previously obtained FP coeffi-
cients of the stochastic LLG equation. The comparison
shows an exact equivalence of the two FPEs in the limit
of small MC step size. From this comparison, we obtain the
time-quantification factor to relate one MC step to real
time unit and the required step size for the precession,
which allows us to map the MC results to that of the
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FIG. 1. Diagram of a random walk step of length r and angle �
to ~e� which define a spherical triangle ABC.
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LLG equation. Generalization to an array of interacting
particles will be shown numerically in the latter part of this
Letter.

We consider an isolated single domain magnetic particle
whose moment can be represented by a Heisenberg spin
with an easy axis anisotropy [7]. To describe the dynamics
of a Heisenberg spin, it is convenient to use the spherical
coordinate system. The FPE in spherical coordinates � and
’ can be written as
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P � P��;’; t� is the probability density of the moment
orientation. A and B are the so-called drift and diffusion
coefficients, respectively, defined as the ensemble mean of
an infinitesimal change of � and ’ with respect to time
[17].

The reduced stochastic LLG dynamical equation can be
written as

dm
dt
� �

�0Hk

1� �2 m� ��h� ht� � � �m� �h� ht�	;

(2)

where m is the magnetic moment unit vector, � and �0 are
the damping and gyromagnetic constant, respectively, and
h is the effective field normalized by the anisotropy field
Hk � 2Ku=�0Ms, where Ku is the anisotropy constant, �0

is the magnetic permeability, and Ms is the saturation
magnetization. The thermal field ht was introduced by
Brown [7] as a white noise term. The FPE corresponding
to the LLG equation has been derived by Brown [7], and its
factors are as follows:
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where, in above equations, h0 � ��0

�0VMs�1��2�
, g0 � h0=�,

k0 � h0=�, E is the total energy [7,12], V is the volume of
the particle and � � �kBT��1, kB is the Boltzmann con-
stant, and T is the temperature in Kelvin.

We will now derive the FPE corresponding to our
Monte Carlo method. For the MC method, we choose
with probability q, to displace the magnetic moment within
a small cone centered at the original magnetization direc-
tion, and with probability �1� q� to perform a rejection-
free precession about an effective field. For the displace-
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ment about a cone, we pick a random vector lying within a
sphere of radius R to the original magnetic moment and
then normalize the resulting vector. The precessional step
vector, i.e., the displacement of magnetic moment due to
precession, is �m � �� �m� h, where �
 1 is a
precessional step size to be determined. The probability
q is chosen to be 1=2, which yields a near-optimal balance
of efficiency and accuracy of our simulation.

To calculate the FP coefficient AMC
� for the MC method,

we obtain the ensemble mean of a small change of � in one
Monte Carlo step. Contributions from the random walk
and precessional step are AMC

� � h��irand=2���prec=2,
where the angle brackets denote the ensemble average.

We first calculate the h��irand, where the angular dis-
placement is defined by two random variables r and angle
�, as shown in Fig. 1. After some geometrical analysis, we
obtain
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Next, we require the probability for the displacement
vector to be of size r�r < R� and angle � with respect to
~e�. This probability is given by Nowak et al. [12] as p�r� �
3
�����������������
R2 � r2
p

=2�R3. Based on the heat-bath Metropolis MC
scheme, the acceptance rate is
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where �E is the energy change in the random walk step.
Thus, integrating over the projected surface of Fig. 1, one
obtains h��irand:
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FIG. 2. Time dependence of magnetization along easy axis, for
an isolated particle. KuV=kBT � 15, applied field h � 0:42
tilted at �=4 relative to easy axis. Damping constant � � 0:5.

FIG. 3 (color online). Time dependence of magnetization
along easy axis for interacting spin array. Periodic boundary
conditions were used and KuV=kBT � 25, applied field h � 0:5
at a tilted angle of �=4 relative to the easy axis. Damping
constant � � 1, exchange coupling strength J=Ku � 2
(Hamiltonian of an interacting system with exchange coupling
strength J can be found, e.g., in Ref. [20]). R � 0:025 is used in
the Monte Carlo simulation. Statistical error for the 10� 10
lattice Monte Carlo simulation is shown in the inset.
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Next we calculate the other contribution from the pre-
cessional step ��prec:
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In the above derivation, we have used the vector identity
a � �b� c� � �a� b� � c and h � ��5mE�=2KuV. Using
Eqs. (7) and (8), AMC
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The other FPE factors can be obtained with the same
procedure.
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We can now compare the FPE factors corresponding to
the Langevin (LLG) equation in Eq. (3) with those of the
Metropolis MC method in Eqs. (9) and (10). Performing a
termwise comparison and omitting O�R3� and higher order
terms, we found that there is a one-to-one mapping be-
tween all terms in the FP coefficients of both the MC
method and the LLG equation.
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40�
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�KuV
10�
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Note that � is of the order of R2; thus we are justified in
neglecting O��2� terms in the above comparison between
Eq. (3) and Eqs. (9) and (10). From Eq. (11), we obtain the
time-quantification factor of our hybrid Metropolis MC
method, while Eq. (12) determines the precessional step
size �. After taking into consideration the probability
factor q, Eqs. (11) and (12) can be reduced to Nowak’s
results [12] in the high damping case.

To test the validity of Eqs. (11) and (12), we perform
numerical calculations of the switching process for a mag-
netic particle in which the easy axis is oriented at �=4 to
the applied field direction. All results are averaged from a
few thousand simulations. We consider the time evolution
behavior of the mean magnetization component along the
easy axis, and found a close convergence between our
time-quantified MC method and the LLG equation
06720
(Fig. 2). In these calculations, we use R � 0:03 for MC
calculations, and �t � 0:001 for the LLG integration. We
also apply our analytic results to 10� 10, 20� 20, and
40� 40 interacting spin array systems. For these simula-
tions, R � 0:025 is used. We remark that a smaller step
size R reduces statistical errors. We obtain very good
convergence between the MC methods and LLG results
for all three arrays (Fig. 3), especially so for the larger
arrays. We believe this is due to the effects of self-
averaging.
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FIG. 4. Switching time vs damping constant �. KuV=kBT �
15, applied field h � 0:42 at a tilted angle of �=4 relative to easy
axis. Error bars are smaller than the size of the symbols. Note
that Nowak’s method diverges from LLG equation at �< 2.
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Note that our derivation of the FPE factors is applicable
in a very general case. For instance, we do not require
assumption of the system being in the vicinity of an energy
minimum [12]. The derivation also provides additional
information; e.g., it explains mathematically why the
Metropolis MC random walk method of Ref. [12] fails to
include the energy conservative precessional motion. The
FPE expression for the pure Metropolis MC method does
not contain terms corresponding to the g0-factor related
terms of the LLG method [Eq. (3)], which are precisely the
terms which reflect the precessional part of the magneti-
zation dynamics [18]. Thus, as shown in Fig. 4, we have
successfully implemented the representation of preces-
sional motion in our MC method. We investigate the
influence of damping constant on switching time, where
the switching time is defined as the time required for the
magnetic moment to reach zero from the initial state. The
precessional step size � guarantees a precise description of
switching process even in the case of very low damping
constant �, in which precessional motion dominates the
reversal process [19]. By contrast, the results obtained
from the pure Metropolis MC method of Nowak et al.
diverges significantly from that of the LLG equation at
low �.

To summarize, we have proposed a general method
using FPE to map MC schemes to LLG dynamics and
vice versa. We derived the drift and diffusion FP terms,
corresponding to the MC method and compare them to the
FP terms obtained from the LLG dynamical equation. By
matching the terms in the drift and diffusion coefficients,
06720
we obtain a time-quantification factor and the required
precessional step size. The idea of using the FPE to link
two stochastic methods (MC and Langevin methods) is
general and may be applied to other areas such as molecu-
lar dynamics in our future work.
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[5] L. Néel, Ann. Geophys. 5, 99 (1949).
[6] Y. Kanai and S. H. Charap, IEEE Trans. Magn. 27, 4972

(1991).
[7] W. F. Brown, Phys. Rev. 130, 1677 (1963).
[8] W. T. Coffey, D. S. F. Crothers, J. L. Dormann, Y. P.

Kalmykov, E. C. Kennedy, and W. Wernsdorfer, Phys.
Rev. Lett. 80, 5655 (1998).

[9] M. A. Novotny, Phys. Rev. Lett. 75, 1424 (1995).
[10] M. Kolesik, M. A. Novotny, and P. A. Rikvold, Phys. Rev.

Lett. 80, 3384 (1998).
[11] H. K. Lee, Y. Okabe, X. Z. Cheng, and M. B. A. Jalil,

Comput. Phys. Commun. 168, 159 (2005).
[12] U. Nowak, R. W. Chantrell, and E. C. Kennedy, Phys. Rev.

Lett. 84, 163 (2000).
[13] X. Z. Cheng, M. B. A. Jalil, H. K. Lee, and Y. Okabe, Phys.

Rev. B 72, 094420 (2005).
[14] O. Chubykalo, U. Nowak, R. Smirnov-Rueda, M. A.

Wongsam, R. W. Chantrell, and J. M. Gonzalez, Phys.
Rev. B 67, 064422 (2003).

[15] F. Reif, Fundamentals of Statistical and Thermal Physics
(McGraw-Hill, New York, 1967).

[16] K. Kikuchi, M. Yoshida, T. Maekawa, and H. Watanabe,
Chem. Phys. Lett. 185, 335 (1991).

[17] H. Risken, The Fokker-Planck Equation (Springer-Verlag,
Berlin, 1967), 2nd ed.

[18] W. T. Coffey, Y. P. Kalmykov, and J. T. Waldron, The
Langevin Equation with Applications in Physics,
Chemistry and Electrical Engineering (World Scientific,
Singapore, 1996).

[19] X. Z. Cheng, M. B. A. Jalil, H. K. Lee, and Y. Okabe,
J. Appl. Phys. (to be published).

[20] D. Hinzke and U. Nowak, Phys. Rev. B 61, 6734 (2000).


