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Transport in Almost Integrable Models: Perturbed Heisenberg Chains
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The heat conductivity ��T� of integrable models, like the one-dimensional spin-1=2 nearest-neighbor
Heisenberg model, is infinite even at finite temperatures as a consequence of the conservation laws
associated with integrability. Small perturbations lead to finite but large transport coefficients which we
calculate perturbatively using exact diagonalization and moment expansions. We show that there are two
different classes of perturbations. While an interchain coupling of strength J? leads to ��T� / 1=J2

? as
expected from simple golden-rule arguments, we obtain a much larger ��T� / 1=J04 for a weak next-
nearest-neighbor interaction J0. This can be explained by a new approximate conservation law of the J-J0

Heisenberg chain.
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The thermodynamic properties of many experimental
systems (like, e.g., KCuF3 or MEM-�TCNQ�2) are well
described by a one-dimensional (1D) nearest-neighbor
spin-1=2 Heisenberg model [1]. In such systems, measure-
ments of specific heat or susceptibilities are in quantitative
agreement with exact results derived from the Bethe an-
satz. The situation is different when transport is consid-
ered. As is typical for an integrable system [2], the heat
conductivity of the Heisenberg chain is infinite at any
temperature [3], while experimentally measured transport
coefficients are finite. In real materials the unavoidable
presence of (small) perturbations like longer range spin-
spin interactions, interchain couplings, disorder or spin-
phonon interactions, which break the integrability, are ex-
pected to render the heat conductivity finite. One can there-
fore expect that conductivities at finite temperature T > 0
are singular functions of terms which break the integra-
bility. This has to be contrasted with the behavior of ther-
modynamic quantities and most other correlation functions
which—at least for finite temperatures—vary smoothly as
a function of small perturbations (assuming that no phase
transitions are induced). Obviously, the general question
arises of how transport can be calculated in ‘‘almost inte-
grable models’’, i.e., how strongly is the transport affected
by small couplings which break the integrability.

This question is not only important for systems well
described by integrable Heisenberg or Hubbard models
but is also of relevance for a much broader class of
quasi-1D materials. The reason is that effective low-energy
theories in one dimension are notoriously integrable. For
example, an arbitrarily complicated two-leg spin ladder is,
at low energies, well described by an integrable sine-
Gordon model as long as the energy gap �E is much
smaller than microscopic energy scales like J. The term
‘‘well described’’ implies again that the integrable model
can be used for an accurate description of thermodynamics.
To understand transport, however, one has to study again
the effects of small perturbation (suppressed by powers of
�E=J) on transport.
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A further reason for our investigations is the general
theoretical question of how singular are integrable models
and how are they affected by perturbations. While the
analog question is well studied in classical systems with
a small number of degrees of freedom, c.f. the famous
Kol’mogorov-Arnol’d-Moser theorem [4], not much is
known in many-particle quantum systems.

Heat transport in spin chains has been the subject of
intense experimental [5–7] and theoretical [2,8–12] re-
search in the recent past. Numerical studies on small
systems at high temperatures [9–11] have shown that non-
integrable models—in contrast to integrable ones—have
finite transport coefficients. However, the regime of small
perturbations, which is probably the most relevant experi-
mentally, is not easily accessible by those methods due to
the singular nature of conductivities near the integrable
point. (More results are available for classical systems, see,
e.g., [12–14].) Analytical approaches which calculate
transport at low T based on the analysis of slow modes
within the memory matrix formalism [8,15,16] are only
valid for systems not too close to an integrable point, as the
corresponding slow modes have been neglected. One mo-
tivation of the present work was actually the question
whether these approximations are valid.

We will consider 1D spin-1=2 models with the
Hamiltonian

H � H0 �H1 �H1;? (1)

consisting of an integrable part

H0 � J
X
i

�Sxi S
x
i�1 � S

y
i S

y
i�1 ��SziS

z
i�1� (2)

and a small perturbation H1 or H1;? which breaks integra-
bility. We will consider two kinds of perturbations. First,
we take into account that in reality next-nearest-neighbor
spins (nnn) are also weakly coupled.

H1 � J0
X
i

�Sxi S
x
i�2 � S

y
i S

y
i�2 ��0SziS

z
i�2�; (3)
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with g0 � J0=J� 1. Alternatively, we consider the weak
exchange coupling between parallel spin chains.
Introducing chain indices �;�, we use

H1;? � J?
X
h��i

X
i

S�i � S�i ; (4)

with g? � J?=J� 1.
The heat current operator JQ �

P
iji is obtained in the

usual way from the continuity equation @thi � ji 	 ji�1,
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where hi is given by H �
P
ihi. In the following we use a

symmetrized version [17]:

hi �
J
2

X
�

�S�i	1 � S�i � S�i � S�i�1 � 2g0S�i	1 � S�i�1

� 2g?
X
h��i

S�i � S�i �

for � � �0 � 1, to obtain for ji,
J2

2

X
�

�2S�i	1 � �S
�
i 
S�i�1��g

0�3S�i	2	4S�i �3S�i�2� � �S
�
i	1
S�i�1��g?

X
h��i

�S�i	1	S�i�1� � �S
�
i 
S�i ���O�g02�:
FIG. 1. Leading order contribution to the scattering rate ��!�
from exact diagonalization of a 20-site Heisenberg chain (thin
solid line) with weak nnn coupling J0 (at T � 1). To this order
the scattering rate vanishes at ! � 0, implying anomalous
transport. The same result is obtained if �2�!� is reconstructed
from N moments (N � 10 . . . 26) using the maximum entropy
method. The inset shows that �2�! � 0� ! 0 for N ! 1.
In the integrable case,H � H0, where the heat current is
conserved, �H; JQ� � 0, the conductivity ��!� develops a
singular contribution at zero frequency, Re��!� / ��!�.
This singular behavior suggests considering a perturbation
theory for the inverse of ��!�, rather than ��!� itself. We
therefore focus our attention on the scattering rate ��!�
[18] defined by

��!� � �
�

��!�=�	 i!
; (5)

where � � �hhJQ; JQii!�0 is the static susceptibility of
the heat current. In the integrable case ��!� � 0, which
reproduces the singularity. Accordingly, ��!�will be small
for small g and we can therefore expand the real part of
Eq. (5) in � at least for finite !,

T!2 Re��!� � Re��!� �
1

�
Im

��!�2

!� i0
� � � � ; (6)

where the left-hand side can be evaluated via the Kubo
formula for small g. To leading order in g we can therefore
express Re��!� �

P
1
n�2 g

n�n�!� in terms of a correlation
function of @tJQ � i�H; JQ� to get

g2�2�!� �
1

!
Re

Z 1
0
dtei�!�i0�th�@tJQ�t�; @tJQ�i0: (7)

Since in the unperturbed system the heat current is con-
served, its time derivative is proportional to the perturba-
tion: _JQ � O�g� and the correlation function (7) can be
evaluated with respect to the unperturbed Heisenberg
model.

Equation (7) is well known in the context of the Mori-
Zwanzig memory matrix formalism [19]. While (7) is
exact in the limit g! 0 at any finite frequency, it is
important to note that this is not the case for ! � 0 where
the expansion (6) can become singular. However, in our
context it is sufficient to know that Eq. (7) gives a rigorous
lower bound to the heat conductivity ��! � 0� for small g.
This has been shown many years ago for systems which
can be described by a Boltzmann equation by Belitz [20].
The generalization of this result to almost integrable mod-
els will be presented in a forthcoming paper [21].
Systematic improvements of (7) can also be calculated
within the memory matrix formalism [8,15,16,19].
First, we consider the Heisenberg chain with a weak and
isotropic (�0 � 1) nnn coupling. Figure 1 shows the lead-
ing order contribution �2�!� to the scattering rate deter-
mined from an evaluation of Eq. (7) for large T using exact
diagonalization. As similar physical quantities (at large T)
have been reported [22] to show surprisingly large finite-
size effects (not observed in our case) we have also recon-
structed �2 from an analytic calculation of its first 26 mo-
ments,

R
1
	1

d!
� !

n�2�!� � h�@n	1
t JQ; JQ�i, using a high-

temperature expansion for an infinite system. We have
used various methods to obtain �2�! � 0� from these
moments including a continued fraction expansion, the
Nickel method [23] and the maximum entropy method
[24] (see Fig. 1). Although the curves differ depending
on which method is used for reconstruction, all methods
consistently show that �2�!! 0� vanishes. Our exact
diagonalization results also show that this is not an artifact
of the T ! 1 limit as the limit is smooth (see, e.g., Fig. 3).

We would like to emphasize that the vanishing of the
scattering rate ��0� to lowest order is very surprising both
formally and physically. Formally, one would expect that
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any ‘‘generic’’ correlation function of type (7) has a finite
! � 0 limit at any finite temperature. Physically, golden-
rule arguments suggest that the breaking of integrability
leads to a decay rate of the heat current of order J02. In the
following we will first investigate the role of higher order
corrections and then the influence of other terms which
break integrability.

Corrections to � up to order J04 are derived starting from
Eq. (6), where our lowest order result, �2, is used to
determine the term of order �2. The @tJQ-@tJQ correlation
function is then evaluated to order J03 and J04 using the
wave functions and energies obtained from the exact diag-
onalization of H0. The results are shown in Fig. 2. Since
Re��!� has to be positive and �2�0� � 0, it is not surpris-
ing that �3�0� also vanishes. �4�0�, however, is clearly
finite. We therefore conclude that the heat conductivity in
the limit J0 ! 0, � � �0 � 1, has the form

� �
J7

T2J04f�T=J�
�

0:054�1�J7

T2J04
for T ! 1; (8)

where f is an (unknown) function of T=J only, with f�x!
1� � 18:5 estimated from our exact diagonalization re-
sults shown in Fig. 2. Together with the analytical expla-
nation given below this is the main result of our Letter.

We start with the observation that the time derivative of
the heat current is linear in g as �H0 � gH1; JQ� � O�g�.
How can the naive golden-rule argument which suggests a
decay rate proportional to g2 fail? This can happen if the
presence of slow modes modifies the long-time behavior of
the @tJQ correlation function as discussed, e.g., in
[8,15,16]. We therefore try to construct a new slow mode
of the perturbed system H0 � gH1 starting from the con-
served heat current J0 of the integrable model H0. Hence,
we seek a solution ~J1 to the equation

�H0 � gH1; J0 � g~J1� � O�g2�: (9)
FIG. 2. Third and fourth order contributions to the scattering
rate for various system sizes (see Fig. 1), the first nonvanishing
contribution being of order g4. Note that finite-size effects are
small.
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As �H0; J0� � 0, we have to construct a ~J1 with

�H0; ~J1� � 	�H1; J0�: (10)

Before constructing ~J1, we investigate the consequences of
its existence for the correlator (7). With JQ � J0 � gJ1 we
find

	i _JQ � �gH1; J0� � �H0; gJ1� �O�g2�; (11)

� g�H0; J1 	 ~J1� �O�g2�: (12)

As a consequence, the leading order contribution �2�!� to
the scattering rate—by partial integration—may be writ-
ten as �2�!� � !2A�!�, where A�!� is the �J1 	 ~J1� self
correlator in the unperturbed system. We therefore con-
clude that ��! � 0� diverges at least as 1=g4 if ~J1 exists.
This trick of studying ‘‘readjusted’’ approximate conser-
vation laws may well be useful for many other systems
with slow modes.

We turn our attention to relation (10). To find a solution
~J1 we make the most general ansatz for it. ~J1 is a transla-
tionally invariant operator of finite range consisting of a
linear combination of products of spin operators. By in-
serting the ansatz into Eq. (10) we obtain a system of linear
equations for the unknown coefficients. This overdeter-
mined system of equations turns out to have a solution in
the case of an isotropic (�0 � 1) nnn perturbation of the
Heisenberg model with

~J 1 � 	g0J2
X
i

�Si�1 � Si�2� � �Si 
 Si�3�: (13)

The explicit construction of ~J1 proves the absence of a J02

contribution to the scattering rate as discussed above. Note
that it is not possible to construct a ~J1 such that the
commutator in Eq. (9) is of order g3 rather than g2.

While (13) can easily be generalized to the case of an
anisotropic XXZ chain with � � 1, no solution for ~J1

exists in the case of an anisotropic nnn perturbation with
�0 � 1. We therefore expect (and confirm numerically)
that in the limit of small J0 and small but finite ��0 	 1�

� �
J5=T2

J02�1	 �0�2h�T=J�
�

0:21�2�J5=T2

J02�1	�0�2
for T ! 1;

(14)

where h is an (unknown) function of T=J only, the value of
which we can determine from the results shown in Fig. 3 in
the limit T ! 1. This figure also shows the T dependence
of � for T * J where we use Eq. (5) and � is calculated to
order g0 using exact diagonalization. Large finite-size
corrections prohibit calculations for T � J within exact
diagonalization.

In many experimental systems we expect that the lead-
ing term which breaks integrability arises from a weak
coupling J? of chains, Eq. (4) (or spin-phonon interactions
[8]). For this perturbation, Eq. (13) has no solution and �
1=J2

? can be evaluated at high temperatures from (7) using
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FIG. 3. Calculated heat conductivity of the anisotropic frus-
trated chain as a function of temperature for various anisotropies
� � �0. Inset: leading order contribution to the scattering rate
for the isotropic case (thin solid line) as well as with weak
anisotropies for T ! 1.
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exact diagonalization, see Fig. 4. Our value for the ladder
in the limit J? ! 0, � � 0:18J5=�J2

?T
2�, seems to be

consistent with results of Zotos [10] obtained for finite
J? using Lanczos diagonalization.

To summarize, we have analyzed the heat transport in
spin chains near the integrable point. In the presence of a
small next-nearest-neighbor coupling J0, which breaks in-
tegrability, one can construct a new approximate conser-
vation law. As a result, the heat conductivity remains
extremely high, � 1=J04. For other perturbations like a
weak interchain coupling J? this construction is not pos-
FIG. 4. Leading order (in J?=J) contribution to the scattering
rate of weakly coupled spin chains for T ! 1. The finite value
at ! � 0 leads to a conductivity � � 0:091�3�J5=�ZJ2

?T
2� per

chain where Z is the number of nearest-neighbor chains.
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sible and � 1=J2
?. Thereby we have shown that transport

in ‘‘almost integrable models’’ depends not only quantita-
tively, but also qualitatively on the precise way in which
integrability is destroyed. It would be interesting to study
experimentally systems in which the strength of J0 and J?
can be varied systematically, e.g., by chemical substitu-
tions or by pressure.
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