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Transport Properties of Strongly Correlated Electrons in Quantum Dots Studied
with a Simple Circuit Model
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Numerical calculations are shown to reproduce the main results of recent experiments involving
nonlocal spin control in quantum dots [Craig et al., Science 304, 565 (2004).]. In particular, the
experimentally reported zero-bias-peak splitting is clearly observed in our studies. To understand these
results, a simple ‘‘circuit model’’ is introduced and shown to qualitatively describe the experiments. The
main idea is that the splitting originates in a Fano antiresonance, which is caused by having one quantum
dot side connected in relation to the current’s path. This scenario provides an explanation of the results of
Craig et al. that is an alternative to the RKKY proposal, also addressed here.
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FIG. 1 (color online). (a) Experimental setup used in Ref. [3].
(b) Illustration of the model studied in this Letter (see text for
details).
The observation of the Kondo effect in a single quantum
dot (QD) [1] and the subsequent theoretical and experi-
mental studies of more complex structures, such as coupled
QDs [2], has provided impetus for the analysis of more
elaborate systems. In a recent seminal work, Craig et al. [3]
report on the possible laboratory realization of the two-
impurity Kondo system. Two similar QDs are coupled
through an open conducting central region (CR). A finite
bias is applied to one of the QDs (QD1 from now on) as
well as to the CR, while the other QD (QD2) is kept at
constant gate potential. The differential conductance of
QD1 is then measured for different charge states of QD2
and different values of its coupling to the CR. The main
result was the suppression and splitting of the zero-bias
anomaly (ZBA) in QD1 by changing the occupancy of
QD2 from an even to an odd number of electrons and by
increasing its coupling to the CR. A Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction between the QDs was
suggested as an explanation for the observed effects [4,5].
The importance of the experiments of Craig et al. cannot be
overstated: the possibility of performing nonlocal spin
control in a system with two lateral QDs has potential
applications in QD-based quantum computing [6].

In this Letter, numerical simulations in good agreement
with the experiments are presented. The central conclusion
of this work is that our computational data, and as a con-
sequence the experimental results, can be explained using a
very simple ‘‘circuit model,’’ where one of the elements is
a T-connected QD that has an intrinsic reduction of con-
ductance with varying biases. This proposal is an alterna-
tive to the more standard RKKY ideas. Figure 1(a) depicts
the experimental setup used in the measurements of Craig
et al. [3] with the labeling used in this Letter. Figure 1(b) is
a schematic representation of the system, introducing two
different tunneling parameters (hopping matrix elements t0

and t00) and the Coulomb repulsionU in each QD (assumed
06=96(6)=066802(4)$23.00 06680
the same for simplicity). To model this system, the
Anderson impurity Hamiltonian is used for both QDs:

Hd �
X

i�1;2;�

��U=2�ni�ni �� � Vgini��; (1)

where the first term represents the usual Coulomb repul-
sion between two electrons in the same QD, and the second
term is the effect of the gate potential Vgi over each QD.
QD1 is directly connected to the left lead and to the CR
with hopping amplitude t0, while QD2 is connected only to
the CR (with hopping amplitude t00), which itself is con-
nected to the right lead with hopping amplitude t (which is
also the hopping amplitude in both leads, and our energy
scale). In summary,

Hleads � t
X

i�

�cyli�cli�1� � c
y
ri�cri�1� � H:c:�; (2)

H12 �
X

�

�t0cy1��cl0� � cCR�� � t
00cy2�cCR�

� tcyCR�cr0� � H:c:�; (3)

where cyli� (cyri�) creates an electron at site i with spin � in
the left (right) lead. The CR is composed of one tight-
binding site [7], unless otherwise stated. Site ‘‘0’’ is the
first site at the left (right) of QD1 (CR) in the left (right)
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lead. The total Hamiltonian is HT � Hd �Hleads �H12.
Note that for Vg1 � Vg2 � �U=2, the Hamiltonian is
particle-hole symmetric. To calculate the conductance G,
using the Keldysh formalism [8], a cluster containing the
interacting dots and a few sites of the leads is solved
exactly [9], the Green functions are calculated, and the
leads are incorporated through a Dyson Equation embed-
ding procedure [10]. All the results shown were obtained
for U � 0:5, t0 � 0:2, zero-bias, and zero temperature.

In Fig. 2, results for the conductance across QD1 (solid
curves) and for the occupancy per spin orientation hn2i of
QD2 (dashed curves) are presented. In Fig. 2(a), t00 � 0:2
and Vg2 varies from�2:0 to�0:3. For Vg2 � �2:0, QD2 is
occupied by two electrons (hn2i � 1) and the conductance
of QD1 displays the characteristic Kondo behavior re-
ported before [11]. For Vg2 � �0:35 the average value of
hn2i decreases to �0:7 (�1:4 electrons in QD2) and hn2i
now depends on Vg1. In addition, G decreases in compari-
son to the result obtained for Vg2 � �2:0. Then, these
numerical results are qualitatively in agreement with the
experimental results shown in Fig. 2 of Craig et al. [3],
namely, by decreasing the occupancy of QD2 from even to
odd number of electrons, the ZBA in QD1 is suppressed.
As Vg2 is further increased (�0:3) a qualitative change
FIG. 2 (color online). (a) Variation ofG with Vg1 in QD1 (solid
curves) and variation of hn2i [occupancy of QD2 per spin
orientation (dashed curves)] for t00 � 0:2 and three different
values of Vg2. For Vg2 � �2:0 (red online), QD2 is occupied
by 2 electrons (hn2i � 1) for any Vg1 and the conductance
through QD1 is essentially the same as if QD2 were not present.
For higher values of Vg2, the average value of hn2i decreases and
becomes dependent on Vg1 (decreasing for lower values of Vg1).
This is accompanied by a suppression of the ZBA [for
�0:35 (green online)] and also by a splitting of the ZBA [for
Vg2 � �0:3 (blue online)]. (b) Variation of G and hn2i with t00

(0.2, 0.4, 0.5) at a fixed value of Vg2 � �0:5. As the value of t00

increases, the average value of hn2i decreases and this is again
accompanied by a suppression of the ZBA. (c) Same as in (b),
but now for Vg2 � �0:25 (particle-hole symmetric point) and
t00 � 0:0, 0.1, and 0.2. Note that G vanishes at Vg1 � �0:25,
where hn2i � 0:5, for all finite values of t00. Note that hn1i � 0:5
when Vg1 � �0:25 for all curves.
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occurs: For values of Vg1 where hn2i � 0:5 (QD2 singly
occupied), the conductance of QD1 vanishes and therefore
there is a narrow dip in G. This splitting of the ZBA is
remarkably similar to that observed in Fig. 3(a) of Ref. [3],
the experimental results. For finite-temperature calcula-
tions, the dip in G will not reach zero, resembling the
experiments even better [12].

To further test the similarities between simulations and
experiments, in Figs. 2(b) and 2(c) results for G and hn2i
are shown for fixed Vg2 and different t00 values. In Fig. 2(b),
where Vg2 � �0:5, as t00 increases from 0.2 to 0.5 there is
only a slight decrease ofG. This is accompanied by a slight
decrease in the average value of hn2i, from�0:9 to�0:7. A
more dramatic change is obtained in Fig. 2(c), where
Vg2 � �0:25, and t00 varies from 0.0 to 0.2. By increasing
t00 from 0.0 to 0.1, the ZBA is now split in two and hn2i
acquires a dependence on Vg1. As t00 further increases (0.2),
the two side peaks decrease and G still vanishes for hn2i �
0:5 (one electron in QD2). Our calculations show that, if
hn2i varies around 0.5, the dip in G is present for all finite
values of t00. Comparing the results in Figs. 3(a) and 3(b) of
Craig et al. in Ref. [3] with Figs. 2(c) and 2(b) in this
Letter, respectively, one notices a striking similarity: The
splitting of the ZBA observed in the experimental results
[their Fig. 3(a)], when the number of electrons in the
control QD is odd and the coupling to the CR is increased,
is very similar to the dip in G for all finite-t00 curves in
Fig. 2(c) (as mentioned above, at finite temperatures, one
expects that the dip in G will not reach zero). When the
occupancy of QD2 is even [Fig. 3(b) in the experimental
results, Ref. [3], and Fig. 2(b) in this Letter], the G depen-
dence on t00 is much less significant and the splitting of the
ZBA does not occur [13].

What is the origin of these results? Below, it will be
argued that a qualitative description of the results can be
achieved by analyzing the two quantum dots through a so-
called circuit model. This model starts with the conduc-
tance of each QD calculated separately, as independent
elements of a circuit, and then the conductance of the
‘‘complete circuit’’ is obtained by combining the conduc-
tances of the two elements connected in series. Figure 3
describes schematically the steps involved in this ap-
proach. In Fig. 3(a), the complete system formed by QD1
and QD2 [shown in Fig. 1(b)] is divided into two compo-
nents. QD1 is modeled as a QD connected directly to
left (L) and right (R) leads, while QD2 is modeled as a
side connected QD [14]. Figure 3(b) shows the respective
conductances and occupancies for each independent ele-
ment vs gate voltage, and Fig. 3(c) represents the scattering
processes (represented by transmission and reflection am-
plitudes) that an electron undergoes while moving through
the complete circuit. The superposition of all these pro-
cesses leads to the total transmittance (proportional to the
conductance) for the circuit model. This can be calculated
in two ways: coherently or incoherently [15]. Since there is
no qualitative difference between them, and in order to
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FIG. 4 (color online). Same as in Fig. 2, but now using the
circuit model.
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FIG. 3 (color online). Schematic representation of the main
ideas behind the circuit model. In (a), the system represented in
Fig. 1(b) is divided into its constituent elements: QD1 is modeled
as a QD connected in series with the leads and QD2 is modeled
as a side connected QD. The curves in (b) represent the con-
ductance and occupancy of each separate circuit element vs the
applied gate potential. (c) Schematic representation of how the
two individual elements are connected to form the final ‘‘cir-
cuit:’’ Incident and reflected wave amplitudes are represented in
the right side of QD2 by black arrows. A transmitted wave
through QD2 undergoes multiple reflections between the two
quantum dots until it is finally transmitted past QD1. The
superposition of all these processes results in the final conduc-
tance for the circuit.
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keep the simplicity of the model, we present the incoherent
results. The equation which provides the final transmit-
tance for the processes depicted in Fig. 3(c) is

T �
T1T2

1� R1R2
; (4)

where the transmittance T1�2� is proportional to the con-
ductance for QD1(2), as depicted in Fig. 3(b), and R1�2� �

1� T1�2� are the reflectances. To calculate T, one needs to
establish how T2 depends on Vg1. The natural way to do
that is to use the dependence of hn2i on Vg1, as depicted in
Fig. 2, and then use the relation between conductance and
occupancy, as shown in the right side of Fig. 3(b) (red
curves online). In other words, the functional relation can
be expressed as T2 � T2�hn2i�Vg1��. It is not surprising that
in a strongly correlated system like the one being analyzed
here, the variation of the gate potential of QD1 will influ-
ence the charge occupancy of QD2, and in turn this will
influence the conductance through QD1.

In Fig. 4, conductance results using Eq. (4) are shown
for the same parameters as in Fig. 2. Although the quanti-
tative agreement varies, there is good overall qualitative
agreement. All the trends are correctly reproduced and
some of the details are quite similar, such as, for example,
the asymmetric shape of the curves at higher values of Vg2

(�0:35 and�0:3) in Fig. 4(a). It is important to notice that
there are no adjustable parameters in the circuit model here
presented. The only input necessary is hn2i vs Vg1, which is
obtained through a calculation for the complete system
(values displayed for hn2i in Fig. 2). The success of the
circuit model implies that the dip in G arises from the Fano
antiresonance which cancels the conductance of QD2
[solid curve in the right panel of Fig. 3(b) (red online)].
The Fano antiresonance can be seen as a destructive inter-
ference process between two different trajectories an elec-
tron can take on its way to QD1: it can cross the CR
06680
without passing through QD2; or it can visit QD2, return
to the CR and then proceed to QD1 [14].

The similarities between the experimental results and
our simulations suggest that our model and numerical
technique have captured the essential physics of the experi-
ments. However, these same experiments have also been
explained using RKKY ideas [4,5]. Can our numerical
results be also understood in this alternative context? To
try to answer this question, several calculations were per-
formed with different parameter values and number of sites
in the CR [16]. In Fig. 5(a), results for spin correlations
between QD1 and QD2 (denoted S1 	 S2) are presented for
the same parameters used in Fig. 2(c). At t00 � 0:0 QD1
and QD2 are uncorrelated as expected. As t00 increases to
0.1, and then 0.2, it is observed that in the region where G
reaches its maximum value [see Fig. 2(c)], S1 	 S2 also
assumes a maximum value and it is positive [ferromagnetic
(FM)]. For t00 > 0:2 (not shown), S1 	 S2 saturates and
starts decreasing. The maximum of S1 	 S2, for all values
of t00, decreases even further as the size of the CR increases
[the results in Fig. 5(a) are for a CR with just one site]. In
addition, the sign of S1 	 S2 alternates as the size of the CR
increases and the QDs move farther apart from each other.
In Fig. 5(b), results for the spin correlation between QD1
and its neighboring site in the CR (denoted S1 	 Sc) is
shown for the same parameters as in Fig. 5(a). S1 	 Sc is
a rough measure of the Kondo correlation in QD1, having a
direct connection with the ZBA in Fig. 2(c). Indeed, for
t00 � 0:0 when G reaches the unitary limit, a robust anti-
ferromagnetic (AF) correlation develops between QD1 and
its neighboring site in the CR. For t00 � 0:1, despite the
narrow dip in G, the side peaks are still close to the unitary
limit [see Fig. 2(c)] and S1 	 Sc is still strongly AF.
However, for t00 � 0:2, both G and S1 	 Sc are strongly
suppressed, in qualitative agreement with a suppressed
ZBA due to a weakened Kondo resonance.

The results thus far seem to indicate that the CR could be
mediating a long-range coupling between the QDs, with
RKKY characteristics. However, the magnitude of the
maximum value of S1 	 S2 [see scale in Figs. 5(a) and
2-3



FIG. 5 (color online). (a) Spin correlation S1 	 S2 between
QD1 and QD2 for the same parameters as in Fig. 2(c). For
t00 � 0:0 (red online), the two QDs are uncorrelated (S1 	 S2 �
0). For finite t00 [0.1 (green online) and 0.2 (blue online)], S1 	 S2
is FM and reaches its maximum value in the region where G is
maximum. (b) Kondo correlations S1 	 Sc between QD1 and the
central site for the same parameters as in (a). All values are AF
and they decrease in amplitude as t00 increases, underscoring the
decrease of the Kondo effect as the FM correlation between QD1
and QD2 increases [compare with (a)]. (c) Variation of G as U1

(Hubbard interaction in QD1) assumes the values 0.4,0.2, and
0.0. Note that the dip in G becomes slightly narrower as U1

decreases; however, it does not disappear.
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5(b)] is too small to account for all the effects observed in
the conductance in Fig. 2(c). One possible way of increas-
ing S1 	 S2 is by coupling QD1 more strongly to the CR
than to the left lead. This was exactly the setup chosen in
Ref. [3], where those authors performed the measurements
with asymmetric couplings to the left (�L) and right (�CR)
sides of QD1. In fact, the gate voltages in Fig. 1(a) were
such that �CR 
 �L. In our model, this is equivalent to
having an asymmetric t0, with t0CR 
 t0L. An analysis of
the results in this asymmetric regime indicates that the
correlation between QD1 and QD2 does indeed increase.
However, performing the calculations with the CR at a
filling lower than one electron per site (half-filling), one
observes that S1 	 S2 is gradually suppressed as the electron
filling falls to a more appropriate level to simulate the two-
dimensional electron gas in the CR. Although one can
argue that some of the dependence of the conductance of
QD1 on the charge state of QD2 seen in Fig. 2 is associated
with the correlations between the two dots, it is apparent
that other effects are also present. This is dramatically
exemplified by the fact that the cancellation of G in
Fig. 2(c) occurs for any finite value of t00, and for t00 � 0
the two QDs will be virtually uncorrelated. The fact that
the dip seen in the conductance in Fig. 2(c) is not domi-
nantly caused by correlations between the dots can be
made more clear by checking the results for the conduc-
tance as U1 (Hubbard interaction in QD1) is reduced to
zero. In Fig. 5(c), results for G are shown for 3 different
values of U1, for the same parameters as for t00 � 0:2 in
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Fig. 2(c). As U1 decreases from 0.4 to 0.2, and then to 0.0,
the dip in the conductance remains, only becoming nar-
rower, indicating that its origin is not associated with
many-body interactions, but more likely with cancellations
typical of T geometries [14] that occur even in the non-
interacting limit [17].

In summary, the numerical results qualitatively repro-
duce the main aspects of recent experiments [3] involving
nonlocal spin control in nanostructures. The main result is
that the splitting observed in the ZBA is caused by a
cancellation in the conductance due to a destructive inter-
ference. This so-called Fano antiresonance has its origin in
one of the dots being side connected to the current’s path.
A simple circuit model qualitatively reproduces the experi-
ments and offers an alternative to a purely RKKY inter-
pretation of the results, underscoring that a laboratory
realization of the two-impurity Kondo system should avoid
geometries susceptible to a Fano antiresonance.
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