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The �-� Transition of Cerium Is Entropy Driven
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We emphasize, on the basis of experimental data and theoretical calculations, that the entropic
stabilization of the � phase is the main driving force of the �-� transition of cerium in a wide temperature
range below the critical point. Using a formulation of the total energy as a functional of the local density
and of the f-orbital local Green’s functions, we perform dynamical mean-field theory calculations within
a new implementation based on the multiple linear muffin tin orbital (LMTO) method, which allows us to
include semicore states. Our results are consistent with the experimental energy differences and with the
qualitative picture of an entropy-driven transition, while also confirming the appearance of a stabilization
energy of the � phase as the quasiparticle Kondo resonance develops.
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The �-� phase transition of cerium [1,2] is a first-order
isostructural transition, ending at a second-order critical
point at Tc ’ 600 K. When temperature decreases below
Tc, the volume change between the two phases increases
[3,4], reaching 15% at room temperature. The magnetic
susceptibility follows Curie-Weiss behavior in the (larger
volume) � phase, and is Pauli-like in the (smaller-volume)
� phase. This is interpreted as 4f electrons being localized
in the � phase, giving rise to local moments and contrib-
uting weakly to the electronic bonding (hence the larger
volume). In contrast, in the � phase, the 4f electrons
participate in both the bonding and the formation of
quasiparticles.

The detailed mechanism underlying the transition has
been the subject of debate. The picture of [5] focuses on the
set of bands with dominant f character which is viewed as
undergoing a Mott transition as in a Hubbard model. The
Kondo volume-collapse (KVC) picture [6] retains both 4f
electron and the broad spd conduction bands (as in a
periodic Anderson model). In this picture, the stronger
hybridization of the low-volume � phase leads to a high
Kondo temperature and in turn to a screening of the 4f
local moment, while the high-volume � phase has a low
Kondo temperature, leading in practice to unscreened mo-
ments for T > T�K. Photoemission experiments [7] demon-
strate that both phases display Hubbard bands and hence
are strongly correlated. In addition, a quasiparticle peak is
seen in the � phase only. These observations are compat-
ible with both pictures. However, a recent theoretical cal-
culation [8] of the optical spectrum, in connection with the
experimental results of Ref. [9], has emphasized the im-
portance of hybridization effects, in qualitative agreement
with the KVC picture. In both the Mott and KVC pictures,
the � phase is stabilized by energetic effects (the
f-electron kinetic energy in the Mott picture, or the
Kondo screening energy in the KVC picture), while the �
phase is stabilized by its large spin-fluctuation entropy.
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In this Letter, we demonstrate that entropic effects ac-
tually play the dominant role in the transition, at least in the
temperature range 300 K< T < Tc. Using available ex-
perimental data, we estimate the jump in entropy and
internal energy (�S � S� � S�, �E � E� � E�) and
find that T�S is always significantly larger than �E in
this temperature range. The second purpose of this Letter is
to examine whether this conclusion is consistent with total
energy calculations within the LDA� DMFT scheme, a
combination of density-functional theory (DFT) within the
local density approximation (LDA) with dynamical mean-
field theory (DMFT). Recently, cerium has been the focus
of pioneering theoretical work [8,10–12] using the LDA�
DMFT approach [13]. In Ref. [11], the total energy was
studied and it was concluded that a negative curvature
effect is apparent already at elevated temperatures (T �
1600 K), corresponding to the energetic stabilization of the
� phase which was viewed as ultimately driving the tran-
sition. Here, we reconsider this issue within a new imple-
mentation of LDA� DMFT using the multiple LMTO
scheme. Importantly, our calculations are based on a func-
tional of the local density and f-orbital Green’s function,
which provides a consistent formalism expected to provide
accurate total energy calculation. Using extensive quantum
Monte Carlo (QMC) calculations, we are able to reach
temperatures lower than the experimental Tc. Our results
are consistent with the qualitative picture of an entropy-
driven transition, and with the experimentally measured
energy differences.

The Clausius-Clapeyron relation dp=dT � �S=�V re-
lates the slope of the transition line to the jump of the
entropy and unit-cell volume �V � V� � V� at the tran-
sition. Furthermore, the continuity of the Gibbs free-
energy yields the relation: �E� T�S� p�V � 0.
Using available experimental data [3,4] on dp=dT and
�V, one can thus determine the three quantities �E,
T�S, and p�V, which are plotted on Fig. 1 as a function
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FIG. 1 (color online). Experimental variation of the entropy
term T�S, energy �E, and p�V [obtained as described in the
text from the data of [4]—circles—and [3]—squares], between
the � and the � phase across the transition line in the P-T phase
diagram. Dotted lines are extrapolations based on exact limits (at
Tc all three terms vanish, and T�S � �E at p � 0).
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of temperature. As is clear from this graph, the entropic
term T�S above room temperature is of order 30– 40 meV,
more than twice as large as the energy difference �E
between the two phases (of order 10–20 meV). The ener-
getic stabilization of the � phase results in �E> 0, but the
difference in free energy has the opposite sign: �F �
F� � Fa � �E� T�S � �p�V < 0 precisely because
the difference of entropy dominates over the energy dif-
ference. We conclude from this analysis that entropic
effects are essential to the physics of the �-� transition,
at least at room temperature and above. We note that the
relative importance of spin and lattice contributions to the
entropy is currently under debate [14,15].

An accurate calculation of the electronic and lattice free
energy of cerium, from first principles, is a major chal-
lenge. While the calculation of the entropy is beyond the
scope of this Letter, we focus in the following on the
calculation of the total energy, at temperatures below the
experimental Tc, within the LDA� DMFT framework.
This raises two important methodological questions. The
first one is the proper choice of the valence states to be
included in the starting LDA Hamiltonian. Indeed, it is
mandatory to include semicore states (in particular 5p
states) in the valence when computing the energy, because
these states contribute significantly to the variation of the
energy upon compression. On the other hand, we have
found that, within LMTO in the atomic spheres approxi-
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mation (ASA), it is crucial to include the 6p orbitals in the
valence in order to obtain a proper band structure. Since in
standard implementations of the LMTO-ASA method, the
simultaneous inclusion of 5p and 6p orbitals in the valence
states is not possible, previous works using DMFT for Ce
were either restricted to spectral properties only [10] or
have treated the different terms in the expression of the
total energy within different implementation of DFT [11].
Second, in view of the small energy differences between
the two phases (on the scale of 10 to 20 meV), a precise
formulation of the total energy functional must be used.

The starting Hamiltonian is constructed from an LDA
calculation within the orthogonalized localized basis set of
the multiple LMTO-ASA scheme [16], retaining 5s; 5p;
6s; 6p; 5d, and 4f states in the valence band. We neglect
spin-orbit coupling which has little effect on LDA energies
in cerium but would be important for calculating the
entropy, however. Many-body terms acting on the f orbi-
tals are added to this Hamiltonian, as well as a double-
counting correction term [as in LDA� U schemes [17] ],
so that the many-body Hamiltonian readsH�HKS�HU�
HDC with:

HKS�
X
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hKS
LL0 �k�c

y
kLckL0 HU�
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X
ab�
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In this expression, hKS
LL0 �k� denotes the Kohn-Sham (LDA)

Hamiltonian at a given k point, expressed in an (orthogo-
nalized) LMTO basis set �k

L, with L � flm�g and L0

running over the full valence set. The Hubbard term is
written in real space, with R denoting atomic positions and
a; b running only over the f orbitals. We use the value of
the Coulomb interaction U � 6 eV, computed by con-
strained LDA calculations in [2,10].

In order to derive an expression for the total energy, we
start from the (‘‘spectral density’’) free-energy functional
introduced in [18], which depends on the total local elec-
tron density ��r� and the on-site Green’s function in the
correlated subset of orbitals: GRR

ab (denoted below Gab for
simplicity). The functional is constructed by introducing
source terms, vKS�r� � vc�r� (the difference of the Kohn-
Sham potential vKS and the crystal potential vc), and
��ab�i!n�, coupling to the density operators  y�r� �r�
and to
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0�, respectively. The Luttinger-Ward [19] part
of the functional is approximated by that of the on-site
local many-body Hamiltonian HU �HDC:
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Minimization with respect to the sources gives a functional of the local Green function and the density only. Stationarity of
this functional yields the basic equations of LDA� DMFT [20], and, in particular, the self-consistency condition for the
local Green’s function: Gab�i!n��

P
kG�k;i!n�ab. The full Green’s function reads: Ĝ�1�k;i!n�� �i!n���1� ĥ

KS�
V̂DC��̂imp�i!n�, with �ab

imp�	�imp=	Gab the local impurity self-energy and VabDC�	�DC=	Gab. From (2), we derive an
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expression of the total energy within LDA� DMFT:

E � ELDA��	 �
X



"KS

 � hHKSi � hHUi � EDC: (3)

Importantly, the total energy does not simply reduce to the
expectation value hHi of the many-body Hamiltonian (1).
In (3), ELDA��	 is the expression of the energy within
density-functional theory,

P

"

KS

 is the sum of the occu-

pied Kohn-Sham eigenvalues, and hHKSi � tr �HKSĜ	.
These last two terms do not cancel each other, since
tr �HKSĜ	 is evaluated with the full Green’s function in-
cluding the self-energy, while

P

�

KS

 � tr �HKSĜKS	.

According to (3), the latter term has to be removed from
ELDA��	, in order to correctly take into account the change
of occupation of the Kohn-Sham orbitals. The scheme
should in principle be performed by imposing self-
consistency not only on the DMFT quantities but also on
the local density [21] (or equivalently on the LDA
Hamiltonian), in such a way that ��r� � hrjĜjri, i.e., in-
cluding the correlation-induced changes to the local den-
sity. However, for simplicity and in order to compare to
previous works [11], we present as a first step in this Letter
calculations without full self-consistency on ��r�. The
double-counting correction is written in terms of the
LDA occupancy of the f orbital, as: EDC � UNf

lda�N
f
lda �

1�=2. In order to solve the DMFT equations, we have
used the Hirsch-Fye quantum Monte Carlo algorithm at
temperatures ranging from 400 K to 1600 K. The num-
ber of sweeps was adjusted in order to obtain a precision
on the energy of order 20 meV, a demanding requirement
at the lowest temperature. The kinetic energy hHKSi �P
n;kHKS�k�G�k; i!n� is computed in a direct manner,

while the correlation energy hHUi is computed from the
double occupancy.

In Fig. 2, we display the spectral functions (obtained by
maximum-entropy continuation of our QMC data) for both
phases, in comparison to experimental spectra. As in pre-
vious LDA� DMFT studies [10,11], the quasiparticle
peak is correctly described in the � phase, while
Hubbard bands are present in both phases. Their intensities
are correct (although their positions are not very accurately
reproduced). These results give us confidence that the main
physical features of both phases are correctly captured by
our calculations.
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FIG. 2 (color online). Experimental [7] and LDA� DMFT
theoretical results for the direct and inverse photoemission
spectra of � and � cerium.
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In Fig. 3, we display our results for the energy as a
function of volume for three different temperatures
(1600 K, 800 K, and 400 K). Statistical error bars of the
QMC calculation are indicated on these plots. At 1600 K
we observe a smooth curve with a minimum located at
31:0
 0:5 �A3. At 800 K, the minimum is located at a
somewhat lower volume and we note that the curvature
decreases near the minimum of the curve and, in particular,
for lower volumes. For 400 K, this effect is strong enough
to shift the minimum to 29
 1 �A3. According to experi-
mental results [3,4], the volume of the � and � phases at
400 K are 28:5
 0:1 and 32:0
 0:1 �A 3, and the difference
of energy between these two phases is 13:5
 4 meV (see
Fig. 1). This value is quite consistent with our calculations,
even though a precise theoretical value would require us to
reduce the statistical error bars even more. Overall, we do
not find evidence for a region of negative curvature in the
energy versus volume curve. However, because 400 K is
below the critical point, a double tangent should be present
in the free energy versus volume F�V�. We have plotted in
Fig. 3 the experimental free energy versus volume curves
deduced from recent pressure versus volume measure-
ments at 413 K [3] and 300 K [3,14], by integrating the
equation of state: F�V� � F�V0� � �

R
V
V0
p�V 0�dV 0. For

volumes between the equilibrium volumes of the � and
� phases (indicated by short vertical lines for each tem-
perature), F�V� is taken to be the common tangent.
Comparison of the theoretical energy to the experimental
free energy suggests that the entropic stabilization of the �
phase is mainly responsible for the appearance of a region
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FIG. 3 (color online). Symbols: internal energy (E) vs volume
curves for cerium, computed within LDA� DMFT for different
temperatures. Also shown is the free energy (F), calculated from
the experimental pressure vs volume curves [(a): [14], (b): [3] ].
The position of these experimental curves with respect to each
other is arbitrary. Short vertical lines on these curves show the
experimental volumes at each temperature. Arrows indicate the
volume of each phase at room temperature, at the transition
pressure.
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FIG. 4 (color online). Left: evolution of A � tr �HKSG	 �
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 and B � hHUi (note that, in this case, the scale is four
times larger) as a function of volume, computed in DMFT for
different temperatures. Right: evolution of the number of f
electrons in LDA� DMFT for different temperatures and in
LDA as a function of volume.
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of negative curvature in the free energy F�V�. Moreover the
entropic stabilization T�S is of order 40 meV at 400 K, as
seen from Figs. 1 and 3 much larger than �E.

Although we do not find a double tangent in the energy
versus volume curve, we do observe a decrease of the
curvature and the flattening of the volume dependence of
the energy, as temperature is reduced. In order to under-
stand its physical origin, we have plotted in Fig. 4, as a
function of volume, the two contributions A � hHKSi �
�
�

LDA

 (i.e., the correlation-induced changes to the ki-

netic and hybridization energies) and B � hHUi (the inter-
action energy among f orbitals). A negative curvature is
clearly seen to develop in A as T is reduced, consistent with
the observed development of the Kondo resonance (Fig. 2)
and with the stabilization energy of the � phase as pre-
viously emphasized in Ref. [11].

Finally, the number of f electrons computed in DMFT is
plotted in Fig. 4 as a function of volume. As expected, this
number is very close to 1 in the localized � phase while it
increases at lower volume due to hybridization effects. In
contrast to Ref. [11], we find a monotonous decrease of nf
as volume is increased. One should keep in mind, however,
that nf depends on the basis set and the functional.

In conclusion, we have revisited the problem of the
volume-collapse transition of cerium, emphasizing that it
is mainly entropy driven. We have presented LDA�
DMFT calculations of the total energy, obtained from a
functional of the local density and local Green’s function,
within a new implementation based on the multiple LMTO
formalism. This allows us to include semicore states and to
calculate the Hamiltonian, the energy, as well as spectra
within the same formalism. We confirm the development of
a contribution to the kinetic and hybridization energy
stabilizing the � phase, as temperature is lowered and the
Kondo quasiparticle resonance develops, in qualitative
agreement with the results of Ref. [11]. However, we find
06640
that the magnitude of this stabilization energy is too small
to induce a pronounced negative curvature in the total
energy curve, and that the transition is actually driven by
entropy effects at least above room temperature. This is
consistent with the experimental measurements of
Drymiotis et al. [22].
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