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Critical Adsorption of Polyelectrolytes onto Charged Spherical Colloids
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The adsorption of a flexible polyelectrolyte in a salt solution onto an oppositely charged spherical
surface is investigated. An analytical solution is derived, which is valid for any sphere radius and
consistently recovers the result of a planar surface in the limit of large sphere radii, by substituting the
Debye-Hückel potential via the Hulthén potential. Expressions for critical quantities such as the critical
radius and the critical surface charge density are provide. A comparison of our theoretical results with
experiments and computer simulations yields remarkable good agreement.
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The complexation of charged macroions by oppositely
charged polyelectrolytes is a fundamental process in bio-
logical systems and many technical applications. Particular
examples are the complexation of histone proteins by DNA
in nucleosomal core particles [1,2] as well as complexes of
polyelectrolytes with charged colloids and micelles [3].
Industrial applications are as diverse as stabilization of col-
loidal suspensions, water treatment, and paper making [4].

The understanding of the complexation between a poly-
ion and a macroion surface accompanied by screening
effects due to counterions and salt posses a major theoreti-
cal challenge [5]. Despite significant efforts and progresses
[5–11], the understanding of charged complexes is still
unsatisfactory and lacks behind that of neutral complexes.
Certain insight into the complexation process is typically
obtained by approximation schemes, e.g., variational cal-
culations [6–9], which, however, may lead to controversial
results [12] and often apply only in limiting situations such
as pointlike particles [9] or large colloidal radii [6].

The theoretical studies of the adsorption behavior of
polyelectrolytes onto spherical surfaces [7,10,11,13,14]
lead to the observation of a phase-transition-like behavior;
i.e., a bound polymer state appears at certain critical con-
ditions which depend on, e.g., the sphere radius and screen-
ing of the Coulomb interaction. The variational calcu-
lations of Muthukumar and his co-workers [6,8] have
provided useful insight into this transition in the limit of
large sphere radii. Experiments on polyelectrolyte-protein
and -micelle complexes [15] and computer simulations
[14], however, typically yield dependencies of the critical
quantities on the Debye screening length which deviate
from the theoretical predictions. To understand and inter-
pret the experimental results correctly, an analytical solu-
tion of the adsorption problem valid for any sphere radius
is mandatory.

In this Letter, we will present an exact solution for the
critical adsorption of a flexible polyelectrolyte onto an
oppositely charged spherical macroion. Expressions for
critical quantities are provided, which are valid for any
sphere radius. In particular, in the limit of zero macroion
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curvature, the results for a planar surface are obtained. In
general, we find a significantly different dependence of the
critical surface charge density on the Debye screening
length than theoretically predicted before, but our predic-
tions are consistent with experimental findings.

The weakly charged polyelectrolyte is described by a
continuous space curve with the linear charge density �.
The intramolecular Coulomb and excluded volume inter-
actions are not taken into account explicitly but are rather
adsorbed into the Kuhn segment of length l. Expressions
for its dependence on the Debye screening length are
provided in Ref. [6]. The oppositely charged macroion is
considered a spherical particle of radius a with a homoge-
neous surface charge density �. The differential equation
for the probability density G�r; r0;L� (Green function) of a
flexible polymer of length L with one end point located at
r�0� � r0 and the other end point located at r�L� � r is
given by
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�r �
V�r�
kBT

�
G�r; r0;L� � ��r� r0���L�; (1)

with kB the Boltzmann constant and T the temperature
[16–18]. V is the interaction energy per length of the chain
end with the sphere, which we take as the Debye-Hückel
potential

VDH � �
4�a2j��j
��1� �a�

e���r�a�

r
; (2)

where r is the radial distance from the sphere center and �
is the inverse Debye screening length. Equation (1) has to
be solved with the boundary conditions G � 0 at the
surface and limjrj!1G � 0.

To find a solution of Eq. (1) we use the bilinear expan-
sion

G�r; r0;L� �
X
n

 �n�r
0� n�r�e

��nL (3)

in terms of the eigenfunctions  n of the eigenvalue equa-
tion
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FIG. 1. Critical values pc obtained from the boundary condi-
tion at the sphere surface. The dotted lines are the approxima-
tions pc � 2–4�a for �a	 1 and pc � �8=j

2
0�e
��a, where

j0 � 2:4048 . . . , for �a� 1, respectively.

PRL 96, 066103 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
17 FEBRUARY 2006
�
�
l
6

�r �
1

kBT
VDH�r�

�
 n�r� � �n n�r� (4)

with the corresponding eigenvalues �n. As is well known,
in the limit L=l� 1 the Green function is dominated by
the eigenfunction corresponding to the ground state. Thus,
we can restrict our considerations to the lowest eigenvalue
[16–18].

Equation (4) corresponds to the Schrödinger equation of
a particle in a spherically symmetric potential. Hence, the
ground state eigenfunction (s wave) is a function of the
radial coordinate only [ 0�r� �  0�r�]. But even for the
ground state, there is no analytical solution for G.

To obtain an analytical solution, we approximate the
Debye-Hückel potential by the Hulthén potential [19,20]
in the following way:

e���r�a�

r
!
e���r�a��1� e��a�

a�1� e��r�
; (5)

i.e., the potentials are identical for r � a. Moreover, the
difference between the two expressions is small for �a �
�r	 1 as well as for �a� 1, since in the latter limit r in
the denominator is slowly varying and can be replaced by a
and e��r 	 1.

With the substitutions  0�r� � e��0�r�1� e��r�	�r�=r
and x � 1� e��r, Eq. (4) turns into the hypergeometric
differential equation

x�1� x�
d2

dx2 	�x� � 
2� x�3� 2�0��
d
dx
	�x�

�

�
1� 2�0 �

2

p

�
	�x� � 0; (6)

for 	, where the eigenvalue �0 is related to �0 via �0 �
�l�2

0�
2=6 and p � �2�kBTl�1� �a�=
12�aj��j�e�a �

1��. The solution of Eq. (6) around the point x � 1 is given
by 	�x� � F�
;�;
� �� �� 1; 1� x�, with F the
Gauss hypergeometric function and the abbreviations 
 �

�0 � 1�
��������������������
�2

0 � 2=p
q

, � � �0 � 1�
��������������������
�2

0 � 2=p
q

, and
� � 2 [21].

The eigenvalue �0 (or �0) is determined from the bound-
ary conditions. In general, the eigenvalues of Eq. (4) can be
positive and negative [16]. The positive eigenvalues corre-
spond to free states (�0 2 C,  0 is a periodic function) and
negative ones to bound states (�0 2 R,  0 decays for r!
1). The transition between free and bound states appears
for �0 � �0 � 0. Since F�
;�;
� �� �� 1; 1� x� �
0 converges for j1� xj< 1, and 
� �� �� 1 is neither
zero nor a negative integer, the boundary condition for r!
1 (i.e., x � 1) is satisfied. Hence, the eigenvalue �0 is
determined by the boundary condition F�
;�;
� ��
�� 1; e��a� � 0. For �0 � 0, the dimensionless parame-
ter p then assumes a particular value pc for a given �a,
which is determined from the condition
06610
F�1�
�����������
2=pc

q
; 1�

�����������
2=pc

q
; 1; e��a� � 0: (7)

The numerical solution, presented in Fig. 1, displays a
monotonic decrease of pc with increasing �a. For small
�a, the critical values are well approximated by pc � 2�
4�a. This dependence is consistent with the necessary
condition for the existence of zeros for F, namely, p < 2
[22].

In the limit �a! 1, the boundary condition (7) can
be expressed in terms of Legendre functions of the first
kind P
 and the Bessel function of the first kind J0 accord-
ing to lim�a!1F�
c;2�
c;1;e��a�� lim�a!1P�
c�1�

2e��a�� lim�a!1J0�
�����������
8=pc

p
e��a=2��0, with 
c�1������������

2=pc
p

[21]. The latter condition is identical to the bound-
ary condition for the adsorption of a polyelectrolyte onto a
planar surface [16]. Thus, our approach reproduces exactly
the properties of the planar geometry in the limit of vanish-
ing sphere curvature. Denoting the first positive root of J0

by j0, where j0 � 2:4048 . . . , we obtain the approximation
pc � �8=j2

0�e
��a for large �a.

Using the critical values pc, we can calculated other
critical quantities for the adsorption, such as the critical
temperature [6], the critical colloid surface charge density
(�c), or the critical colloid radius ac. As pointed out in
Ref. [23], the critical surface charge density is the more
useful experimental quantity than the critical temperature,
because a temperature change affects not only the colloid
polymer interaction but also the solvent properties.

Figure 2 displays the critical charge density as a function
of �. For j�j> j�cj, polyelectrolytes adsorb at the spheri-
cal macroion. In the large curvature limit (�a	 1), we
obtain the critical charge density

j�cj �
�kBTl

24�a2j�j
� (8)

when we use pc � 2. Thus, the exact solution for the
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FIG. 3. Critical radius ac as a function of the Debye screening
length according to Eq. (10). The dotted lines are the approx-
imations of Eq. (11). The dashed line represents the critical
radius according to the variational calculations of Refs. [6,8].
The symbols are Monte Carlo simulation results taken from
Ref. [14]. To match the scales of our model, the � values of
Ref. [14] are multiplied by 4.06 and the values for the critical
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FIG. 2. Critical charge j�cj as function of the inverse Debye
screening length. The dotted lines are the analytical approxima-
tions Eq. (8) for �a	 1 and Eq. (9) for �a� 1, respectively.
No adsorption is obtained in the area to the right of the curve.
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Debye-Hückel potential predicts a linear dependence of the
critical colloid charge density on the inverse Debye screen-
ing length for �a	 1. This is different from the predicted
dependence j�cj 
 �2 based on the variational calculation
of Ref. [6]. However, the variational calculation of Ref. [7]
predicts the same dependence on �, but the numerical
factors are rather different. The Kuhn segment length l of
the polymer is independent of � in this limit, as shown in
Ref. [17].

In the opposite limit of small curvature (�a� 1), we
obtain from pc � �8=j

2
0�e
��a the critical charge density

j�cj �
j2

0�kBTl
96�j�j

�3: (9)

This dependence on � is identical to that found by varia-
tional calculations [6,7]. Taking the dependence of the
Kuhn length on � into account—for flexible polymers, l

��bl with bl � 4=5� 5=4 is predicted [17,24]—we find
j�cj 
 ���11=5�7=4� [6].

The limit �a! 1 corresponds to the limit of a planar
surface, and we obtain exactly the same expression as that
derived for such a geometry in Refs. [16,17]. However,
these authors consider a planar surface with surface charge
densities on both sides of the plane. The small curvature
limit of our potential corresponds to a charge density on
one of the surfaces only. This leads to a j�cj which is a
factor of 2 larger than that presented in Refs. [16,17].

The complex formation of a polyelectrolyte with oppo-
sitely charged micelles and proteins has been studied in,
e.g., Refs. [15,23,25–27]. These experiments confirm that
complexation occurs only when the surface charge density
exceeds a critical value. This value typically grows with
the reciprocal Debye screening length as j�cj 
 �b with
b � 1� 1:4 [15,25–27]. Our results agree with the experi-
mental findings when we take the above � dependence of l
into account. Since 1 & �a & 5 for the experimental sys-
tems, their �c’s are rather within the crossover regime than
06610
characteristic for the limiting behavior at small or large �a.
The slope of the curve in Fig. 2 monotonously increases
from 2 to 2.8 in this �a interval. A power-law fit for 1 �
�a � 4 yields j�cj 
 �1:4, when we use bl � 1, in agree-
ment with experiments.

Instead of the charge density �c, a critical sphere radius
ac is often considered [6,8,14]. By introducing the abbre-
viation �� � 
96�j��j=�j2

0�kBTl��
1=3 and using the defini-

tion of p, we obtain the following equation for ac:

pc��ac��e
�ac � 1� �

8�2

j2
0ac ��3 �1� �ac� � 0: (10)

The solution of this equation yields a universal curve for
ac �� as a function of �= ��.

The numerical solution of Eq. (10) is shown in Fig. 3
together with the analytical approximations

ac �� �

8<
:

����������������
4�= ��j2

0

q
�	 ��

��= ���2=
1� ��= ���3� �! ��
: (11)

No adsorption is obtained in the region located at the right
of the curve. At a fixed � < ��, the entropy penalty due to
adsorption of the chain monomers decreases with increases
sphere radius. Beyond the critical radius the energy gain
exceeds the entropy loss and the polymer adsorbs at the
sphere surface. As is obvious from the analytical expres-
sion, �� is the maximum value of the inverse Debye screen-
ing length; no adsorption is obtained for larger values,
neither for a sphere nor for a planar surface. This is
qualitatively consistent with the variational calculations
of Refs. [6,8]. These calculations predict the same depen-
dence of the maximum value for � on the polymer and
sphere parameters as our (exact) solution. Quantitatively,
however, the value of the variational calculation is smaller
radii are divided by 16.
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by the factor 8=j2
0. In addition, the shape of the critical

curve is rather different as shown in Fig. 3.
In Ref. [14], the critical radius has been determined by

Monte Carlo simulations. By adjusting the � values of
these data such that the singularity appears at unity, we
find that the functional dependence of the simulation data
is very similar to that predicted by our calculations.
Multiplying the simulation data by a proportionality factor,
we achieve a remarkable good agreement with our univer-
sal ac curve. Hence, the difference between the simulation
data and the results of the variational calculations of the
Muthukumar model is not due to the ground state domi-
nance approximation as speculated in Ref. [14]. It is rather
a consequence of the limited applicability of the variational
ansatz.

An important issue of polyelectrolyte adsorption is
overcharging of a spherical object. Several theoretical
models predict such an effect [28–30] and it has been
observed experimentally in complexation of polyelectro-
lytes with globular proteins of inhomogeneous charge
patterns [27]. Our considerations apply to the adsorption
transition only and no overcharging can be predicted be-
cause there is a critical charge density below which no
adsorption occurs. The overcharging phenomena requires
further investigations.

In the present model the regime of weak polyelectrolyte
adsorption onto a sphere is considered. In the opposite
limit of strong adsorption, the adsorbed polyelectrolytes
self-organize in well-defined patterns on the sphere sur-
face [13]. Here, the chain entropy becomes less impor-
tant; the pattern is rather governed by maximization of
polyelectrolyte-sphere attraction and minimization of
polyelectrolyte-polyelectrolyte repulsion. Within a simple
model, the solution of the linear Poisson-Boltzmann equa-
tion for such charge patterns predicts that neutral and
undercharged complexes are favored [30,31].

In summary, we have derived critical values for the
adsorption of a weakly charged flexible polyelectrolyte
onto an oppositely charged spherical surface. In the limit
of zero curvature, the results for a planar surface are
consistently obtained. The experimentally determined
power-law dependencies of the critical charge density on
the Debye screening length can be explained when the
dependence of the Kuhn length on the screening length
is taken into account. The comparison of the analyti-
cally predicted universal curve for the critical sphere ra-
dius with computer simulations [14] yields remarkable
good agreement. More experiments are required to fully
understand the adsorption of flexible polymers. We hope
that the predicted universal dependencies, e.g., for the
critical sphere radius (10), will be helpful in such an
endeavor.
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