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Glassy Behavior of Light
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We study the nonlinear dynamics of a multimode random laser using the methods of statistical physics
of disordered systems. A replica-symmetry breaking phase transition is predicted as a function of the
pump intensity. We thus show that light propagating in a random nonlinear medium displays glassy
behavior; i.e., the photon gas has a multitude of metastable states and a nonvanishing complexity,
corresponding to mode-locking processes in random lasers. The present work reveals the existence of new
physical phenomena, and demonstrates how nonlinear optics and random lasers can be a benchmark for
the modern theory of complex systems and glasses.
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The first marriage between statistical mechanics and
lasers dates back to their early development [1,2]. Since
the 1970s, many authors have outlined that the threshold
for lasing can be interpreted as a thermodynamic phase
transition and these ideas spread out in the field of pho-
tonics, later embracing also nonlinear optics [for a review
see, e.g., [3] ]. In recent articles [4–7], the statistical prop-
erties of laser light in homogeneous cavities have been
studied taking into account nonlinear phenomena, like
gain saturation and intensity dependent refractive index.
This nonlinearity gives rise to an interaction among the
oscillation modes, which in turn produces new interesting
effects. Specifically, by mapping the dynamics in an or-
dered Hamiltonian problem, the authors of Ref. [7] pre-
dicted a critical behavior (a phase transition) of the laser
mode-locking process.

In the latter example, the statistical mechanics of or-
dered systems is applied to study light propagation in
amplifying homogeneous nonlinear materials. In recent
years, the locally inhomogeneous character of matter,
and, in particular, the disordered nature of these inhomo-
geneities, are becoming more and more important.
Specifically, relevant attention has been dedicated to light
amplification in random media and random lasers (RL) [8–
13]. This is a fascinating topic that bridges various fields
like light localization and diffusion, thermodynamics, non-
linear physics, and quantum optics, and it has relevant
fundamental and applicative perspectives, as in biophysics
[14]. Methods of statistical mechanics have not yet been
applied to the propagation of light in nonlinear disordered
active media, but the rich behavior observed in glasses
(aging, memory effects, etc.) can be foreseen [15,16].

In this Letter, we analytically study the statistical prop-
erties of the modes of a random optical cavity. Various
physical settings are embraced by this problem: for ex-
ample, a microstructured cavity filled by an active soft
material, like doped liquid crystals, cavityless RL, or
even a standard laser system with a disordered amplifying
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medium. In all these cases, the disorder varies on time
scales much longer than the optical fields [it is ‘‘quenched’’
[15] ] and, for any realization of the system, the supported
electromagnetic modes interact because of the nonlinearity
of the resonant medium.

We first show that light propagation is described by a
Hamiltonian with the pumping rate acting as inverse tem-
perature. The mode amplitudes are taken as slowly varying
and their phases play the role of ‘‘spins’’ in a Hamiltonian,
which turns out to be a generalization of the XY model [17]
and of the so-called k-trigonometric model [18]. The ther-
modynamics of the model is studied using the replica trick
[15], and a one step replica-symmetry breaking transition
is found [18]. Our results show that when the average
energy into each mode increases (i.e., the ‘‘temperature’’
is decreased), the system undergoes a glass transition,
meaning that its dynamics slows down and an exponen-
tially large number of states appears, with a nonvanishing
‘‘complexity’’ [19]. They correspond to ‘‘mode-locked’’
states of a random laser. This treatment somehow general-
izes to disordered systems early works on multimode lasers
[see, e.g., [20–22] ], and can be also applied to other
problems involving multimode interactions in a nonlinear
medium. By providing an analytically treatable statistical
model, we not only unveil the complex behavior (in the
meaning of modern glassy physics) of light in active dis-
ordered media, but we also demonstrate the possibility of
using them for testing the replica-symmetry breaking tran-
sitions. When studying the glass transition of atomic or
molecular systems, due to the predicted kinetic arrest, the
interesting time scale becomes extremely long with respect
to that experimentally accessible. Because of the intrinsi-
cally fast photon dynamics, we expect that the system can
be equilibrated much closer to the transition, and this
should provide new and interesting experimental data on
kinetically arrested ‘‘photon glasses.’’

We consider a dielectric resonator described by a refrac-
tive index profile n�r�. The time dependence of this quan-
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tity is of no interest here, taking place on a time scale much
slower than that of the photon propagation. Our approach
follows the standard coupled mode theory in the time
domain [23]. The Maxwell’s equations in the presence of
a nonlinear polarization PNL are:

r�H�r; t� � "0n
2�r�@tE�r; t� � @tPNL�r; t;E�;

r� E�r; t� � ��0@tH�r; t�:
(1)

The fields E�r; t� and H�r; t� are conveniently decom-
posed in normal modes corresponding to the solutions of
the linear problem, PNL � 0 (frequencies!m, eigenvectors
Em�r�, Hm�r�, and ‘‘amplitudes’’ am). For later conve-
nience, they are cast in the form

E �r; t� � <
�X
m

�������
!m
p

amEm�r� exp��i!mt�
�
; (2)

(and similarly for H) and the total energy stored in the
cavity is E � �mEm � �m!mjamj

2 .
In the presence of nonlinearity, the amplitudes am are

time dependent and their evolution is described by coupled
equations that can be derived using standard perturbation
techniques [23] and take the general form

dam�t�
dt

� i
�������
!m
p

4

Z
V

E�m�r� � Pm�r�dV: (3)

The integral in Eq. (3) is extended to the cavity volume
where the nonlinear polarization is different from zero. The
quantity Pm�r� is the amplitude of the component of
the nonlinear polarization oscillating at !m, PNL �
<	
P
mPm exp��i!mt�
 and its explicit expression as func-

tion of the fields depends on the considered nonlinearity.
For isotropic media the leading cubic terms are written as
[24]

P�m �
X

!m�!p�!q�!r

K����E
�
pE

�
qE�r apaqa�r :

Here K���� �
�������������������!p!q!r
p ������!m;!p;!q;�!r; r� and

� is the third order response susceptibility tensor [explicit
expressions are known, for example, in the two levels
approximation [20] ]; the sum over Cartesian indices is
implicit. The coupled mode theory equations in a nonlinear
cavity read hence as _am�t� � �

1
2 �pqrgpqrmapaqa

�
r , where

the sum is extended over all the modes and

gpqrm �
�������
!m
p

2i

Z
V
K����E�mE

�
pE

�
qE�r dV: (4)

Under standard approximations [22,24], the tensor g can be
taken as real-valued. Introducing the (real-valued) function
H � 1

4 �spqrgspqr � asapa�qa�r , and taking into account ra-
diation losses and material absorption processes, repre-
sented by the coefficients �m and light amplification
through �m [23], we have

dam
dt
� �

@H
@a�m

� �m�t�; (5)

where H �
P
m��m � �m�jamj

2 �H, and having intro-
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duced as usual the noise term [2,25], with h�p�t���q�t0�i �
2kBTbath�pq��t� t

0�, weighted by an effective temperature
Tbath [see Eq. (10)], with kB the Boltzmann constant. The
previous equation is a standard Langevin model for a
system of N particles moving in 2N dimensions (repre-
sented by f<am;=amgm�1...N) [2,6] and its invariant mea-
sure is given by exp��H =kBTbath�.

We consider a large number of modes in a small fre-
quency interval !m �!0 � 2�c=	 pumped and put into
oscillations. We can write am�t� � Am�t� exp	i’m�t�
,
which is useful as we expect Am to be slowly varying
with respect to ’m, as discussed below. In previous works,
with reference to standard multimode lasers [21,22], the
phase-dependent terms in (5) were always averaged out by
assuming the ’m as rapidly varying, independent, and
uniformly distributed. The resulting equations determine
the oscillation energy Em into each mode. However, for an
increasing number of modes, nonlinear beatings induce
nontrivial light dynamics which is mainly due to the rap-
idly varying phases, while the amplitudes can still be taken
as slowly varying [21,23,26].

Summing up, the Hamiltonian, depending on the rele-
vant dynamic variables, the phases ’m, is

H �G;’� �H o �
X
Gspqr cos�’s � ’p � ’q � ’r�;

(6)

where H o �
P
m��m � �m�A

2
m is an irrelevant constant

term and Gspqr � gspqrAsApAqAr. Hereafter we will con-
sider these G coefficients as quenched (due to the slow t
dependence of Am).

If the cavity is realized by a random medium, as de-
scribed above, the coupling coefficients G are random
variables. Their values depend on the mode profiles, the
resonant frequencies, and on the quenched values of the
energies Em � !mA

2
m in each mode, which vary with each

realization of the cavity for a given pumping rate. For these
reasons we take Gspqr as random Gaussian variables, with
zero mean value hGi � 0. The latter hypothesis can be
removed by a suitable, but not trivial, generalization of
the treatment below [15].

The Gs roughly scale as hA2i2V�3=2, as one can derive
from Eq. (4) by using that E�m is O�V�1=2� and K���� is a
random variable integrated over V. Recalling that !m �
!0, !0hA2i measures the average energy per mode. By a
simple rescaling, the invariant measure can be written as
exp	��H�J; ’�
, where Jspqr � Gspqr=�g0hA2i2� has stan-
dard deviation / 1=V3=2 / 1=N3=2 and g0 is a material-
dependent constant. Note that this scaling of the Js guar-
antees that the Hamiltonian is extensive [15,19]. The pa-
rameter that controls the phase transition is then
� � 1=T � hA2i2g0=kBTbath. Thus, in what follows, tran-
sitions obtained as � are increased (i.e., the adimensional
effective temperature T is decreased), can be controlled by
increasing the amount of energy stored on average into
each mode (i.e., the pumping rate).
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FIG. 1 (color online). The 1RSB overlap �q as a function of the
reduced temperature. The full line is the stable part of the curve;
the dashed line is the metastable part. Inset: the complexity ��T�
as a function of the temperature. It jumps discontinuously at Td
where the metastable solution first appears and vanishes at Tc
where the glass transition takes place.
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The calculation of the thermodynamics goes through the
evaluation of the partition function Z�J� �

R
d’�

exp	��H�J; ’�
 and, more specifically, of the free en-
ergy averaged over the quenched disorder f��� �
limN!1N�1logZ�J�. The latter can be written, using the
replica trick [15], in terms of the replicated partition func-
tion Zn�J�, that is a functional of the overlap matrix qab �
N�1P

je
i�’aj�’

b
j � and can be computed via a saddle-point

method using standard techniques [15,19]. In the follow-
ing, due to rotational symmetry, we will restrict ourselves
to real qab values. The replica symmetric (RS) solution
corresponds to qab � q and as usual it turns out that q � 0.
The RS free energy is simply fRS � ��=4 as in the Ising
p-spin glass. In this regime the ’m are uniformly distrib-
uted in 	0; 2��, independent, and rapidly evolving, as
originally considered in [21,22].

In the one step replica-symmetry breaking (1RSB) ansatz
one divides the matrix qab in n=m blocks of sidem [15,19].
The elements in the off-diagonal blocks are set to 0 while
in the diagonal blocks RS is assumed and qab � q. In this
case, the free energy is:

�f�m; q� � ���2=4�	1� 3�1�m�q4 � 4q3


�m�1 log
Z 1

0
dz z e�z

2=2I0��	z�m; (7)

where In indicates the modified Bessel function of first

kind, and 	 �
��������
2q3

p
. The saddle-point values of m and q

( �m; �q) are determined by @mf � @qf � 0. The equation
for q is

q �

R
1
0 dz z e

�z2=2Im0 ��	z�
I1��	z�2

I0��	z�2R
1
0 dz z e

�z2=2Im0 ��	z�
: (8)

Starting from Eqs. (7) and (8)—that are identical to the
1RSB free energy for the (p � 4) p-spin model, the only
difference being the presence of the Bessel function instead
of the hyperbolic cosine—one can derive the full phase
space structure of the model at the 1RSB level [27–29].

In Fig. 1 the solution �q of Eq. (8) for m � 1 is re-
ported as a function of T. At high temperature �q � 0
and the RS solution is recovered. On lowering the tem-
perature, a solution �q � 0 first appears at Td (dashed line).
However, it becomes stable only below the thermodynamic
glass transition temperature Tc < Td (full line), as in stan-
dard first-order transitions. For Tc < T < Td the phase
space is disconnected in an exponential number N �T� �
exp	N��T�
 of states. The 1RSB complexity ��T� is re-
ported in the inset of Fig. 1. At T � Td a dynamical
transition is expected to take place [17,20].

The stability of the 1RSB solution can be studied (within
the assumption that qab is real). It turns out that the 1RSB

solution is thermodynamically stable for all temperatures,
so in this case no Gardner transition is present [27–29].

The presence of a dynamical phase transition at a given
value of the random laser pump intensity implies different
06570
interesting physical phenomena. These could be experi-
mentally investigated by studying (for example, via het-
erodyne experiments) the self-correlation function of a
specific frequency (!m) component of the electric field
in the cavity:

C�t; !m� � !mA2
mhexpfi	’m�t� 
� � ’m�
�
gi
: (9)

On approaching Td from above (i.e., on increasing the
pump power), the dynamics of phase variable ’m�t� be-
comes slower and slower and C�t; !m� is expected to decay
towards zero in longer and longer times. At the dynamical
transition, the dynamics of the ’’s becomes nonergodic;
they are no longer able to explore the whole phase space
and the function C�t; !m� decays towards a plateau. In
other words, the mode’s phases ’m�t�—beside from small
oscillation—are locked to some ‘‘equilibrium’’ values
(‘‘random mode locking’’). Because of the nonvanishing
value of the complexity � at Td, however, an exponentially
large number of such equilibrium positions exist, so giving
rise to many different time structures of the electric field in
random lasers. On further increasing the pump power, the
complexity � decreases and the ideal glassy state is
reached at T � Tc. Below this value the number of equi-
librium states is not exponential in N (� � 0). The equi-
librium states below Td are difficult to reach because the
needed time scale diverges [16]: interesting phenomena as
aging, memory effects, and history dependent responses
are expected to take place for T < Td. All these nonequi-
librium phenomena are theoretically predicted and, to
some extent, experimentally verified [16] in material sys-
tems (structural glasses, spin glasses, ...). The absence of
conclusive experiments is mainly due to the long time
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needed to ‘‘equilibrate’’ real glasses below Td, a time
which is dictated by the relaxation time of the atomic or
molecular dynamics in condensed matter (seconds in the
interesting glass transition region). Photon dynamics in
cavities is orders of magnitude faster. This observation
drives us to propose lasers in disordered media as a bench-
mark to test experimentally the outcome of those theories,
as the replica-symmetry breaking.

As outlined above, the previous analysis holds for a
variety of physical systems. As an example we consider
recent experiments on RL [e.g., [10,11]] with some scat-
terers dispersed in an host medium. Either the former or the
latter can play the role of the amplifying medium; as a
result, the nonlinear susceptibility varies on scales compa-
rable with the dimensions of the scatterers. We hence take
for the generic component of the nonlinear susceptibility,
with typical value �0, h��r���r0�i � �2

0L
3
r��r� r0�, with

Lr a typical length of the systems (e.g., the dimension of
the scatterers) and � a coarse-grained Dirac delta.
Considering N modes oscillating in a wavelength range
�	, and taking for the density of modes the standard
expression for a box [26], with average refractive index
n0, the scaling arguments reported above lead to an explicit
expression of g0, from which the RSB threshold average
energy per mode is obtained

E RSB � !0hA2i �

����������������������������������������������������
kBTbath�

2
0	

6

8�3=2n1=2
0 Td�0�Lr�	�3=2

vuut : (10)

The noise temperature can be taken as due to the sponta-
neous emission, which is typically the dominant contribu-
tion, following [26] 2kBTbath�@	N2=�N2�N1�
t=
@=
,
with 
 the average lifetime per mode, and 	N2=�N2 � N1�
t
the population inversion at lasing threshold. Taking ty-
pical values from the reported experiments (�	 �
100 nm, 	 � 630 nm, n0 � 2, Lr � 10 nm, 
 � 100 fs)
and for the susceptibility �0 � 10�27 C m V�3 [24] it is
ERSB  10�16 J. Assuming a pumping beam with peak
power PRSB  NERSB=
 gives PRSB  0:1 W with N �
100, which focused on the typical area of 100 �m2 pro-
vides the typical values for the peak pump intensities used
in the experiments (100 kW=cm2). Thus we expect that
the glass transition can be observed within the currently
available experimental framework.

In conclusion, the multimode dynamics in a random
laser cavity has been investigated by statistical physics
techniques, and a one step replica-symmetry breaking
phase transition has been found. Our results emphasize
two important points: (i) the light propagation in nonlinear
disordered media shows the same complex behavior of the
dynamics of glassy systems (aging, memory, . . .) and
(ii) due to the faster photon dynamics with respect to the
atomic one, it is possible to use the random lasers as
systems for experimentally testing the replica-symmetry
breaking transitions.
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