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Anomalous Latent Heat in Nonequilibrium Phase Transitions
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We study first-order phase transitions in a two-temperature system, where due to the time-scale
separation all the basic thermodynamical quantities (free energy, entropy, etc.) are well defined. The
sign of the latent heat is found to be counterintuitive: it is positive when going from the phase where the
temperatures and the entropy are higher to the one where these quantities are lower. The effect exists only
out of equilibrium and requires conflicting interactions. It is displayed on a lattice gas model of

ferromagnetically interacting spin-1/2 particles.
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The theory of equilibrium phase transitions is an estab-
lished field with known achievements in describing trans-
formations of various states of the matter [1,2]. Concepts
borrowed from this theory apply for some nonequilibrium
transitions that get equilibrium features on the macroscopic
scale [3-5]. Less is known, however, about phase transi-
tion scenarios that are impossible in equilibrium.

Here we study such a truly nonequilibrium phase tran-
sition scenario realized in the steady state of a two-
temperature system. Since the components of the system
are in local equilibrium, the quantities like entropy, internal
energy, and free energy are well defined. In spite of that,
the system shows a counterintuitive type of first-order
phase transition, where the latent heat is positive (anoma-
lous latent heat) when transforming a high temperature
(higher entropy) phase to the low temperature (lower en-
tropy) one; i.e., in the first phase the energy is larger. This is
a nonequilibrium effect. It is well known, even from the
everyday physics, that for equilibrium transitions the latent
heat is negative [1]. This plays a crucial role in the heat
balance of the Earth and in the weather formation, since
nearly 70% of the energy transferred from the Earth’s
surface is due to the latent heat consumed during the
vaporization at the surface and released during the vapor
condensation in the atmosphere [6].

First we shall recall the thermodynamics of two-
temperature systems with different time scales [7-9]. In
contrast to the usual equilibrium case, the anomalous latent
heat is not forbidden here. We then work out a simple
model of mean-field Ising ferromagnet demonstrating the
sought effect. A necessary condition for its existence is the
presence of conflicting interactions.

Consider a pair of coupled stochastic variables s and f
with Hamiltonian H(s, f), which interact with different
thermal baths at temperatures 7 and Ty = T, respectively
(s and f can denote a set of variables). For T = T, = 1/,
the stationary probability distribution P(s, f) of the system
is Gibbsian: P(s, f) « e AHf) For T # T, we can derive
the stationary P(s, f) if the variables have different char-
acteristic times: s is slow, while f is fast (adiabatic limit).
This derivation together with corrections coming from a
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large, but finite time-scale difference was given in [§]
based on stochastic equations of motion. Here we recall
the heuristics [7—-10]. On the times relevant for f, s is fixed,
and the conditional probability P(f|s) is Gibbsian:

1
P(fls) = = e PHED),

70 Z(s) = Trpe PHEH, (1)

where Tr; is the sum over all values of f. The steady-state
P(s) is found by noting that on the times relevant for s, 7 is
already in the conditional steady state. Thus the force
d.H(s, f) acting on s can be averaged over P(fls):
Tr[d,H (s, f)P(fls)] = 9,F(s), where F(s) = —TInZ(s)
is the conditional free energy. The steady P(s) is
Gibbsian with the Hamiltonian F(s):

e BsF(s) 7T/, (s)

Zz z
and the common probability is P(s, f) = P(s)P(f]s).

This two-temperature situation admits a (generalized)
thermodynamical description, because in the adiabatic
limit both variables are in local equilibrium [7-9]. (It has
certain analogies with nonequilibrium thermodynamics of
the glassy state proposed in [5].) The average energy of the
system is U = Tr, [[P(s, f)H(s, f)], or using (1) and (2)

T

1
U=--a,nZl, = 3
nﬂnln n TS ()

P(s) = Z =Tre BT, (2)

where the derivative is taken for fixed n. The entropies of s
and f are, respectively,

S, = —Tr,P(s) InP(s), 4)
S = —Tr,P(s)[Tr;P(f|s) InP(s|f)]. 5)

Equation (4) is the usual definition of entropy. Equation (5)
is the conditional entropy; it appears due to the adiabatic
limit. The total entropy is the sum of partial ones S, =
—Tr, ([ P(s, f) InP(s, f)] = S + S,. Now the steady dis-
tributions (1) and (2) are obtained when minimizing the
free energy of the slow motion

F =-T,InZ (6)
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To this end, note from (1)—(5) that the free energy and the
entropies are expressed as

F=U-TS-T,S, (7)

S, = _aTS:FIT’ §= _aT.’FITS’ 3

generalizing the usual thermodynamical relations.
Let us now study the first-order phase transitions in this
approach. Consider two phases / and /4. Assume that when

T, decreases below some critical value Tﬁc) (T is fixed), the
phase ! dominates, since its free energy is smaller: F; <
F,. ForT, > T§°) the dominating phase is k: F;, > F,. At
high (low) temperatures T, [ (k) is metastable. F;, = F,,
at T, = T\, while other quantities change by jump.
Denoting 6X = X, — X, we get

U= T,05, +ToS = _TsaTx[‘S:F]lT - TaT[‘s:F]lTS,
()]

where 86U is the latent heat of the transition. Note that, in
general, both S, and 6S are functions of 7' and 7. In the
vicinity of T, §F = F, — F, is an increasing function
of T, (for fixed T); thus 65, <0. The sign of 6S is,
however, left open, and we cannot conclude that 6 U <
0. It may even be positive (anomalous latent heat), pro-
vided S > 0, that is, provided the system moves from [ to
h when decreasing T for constant 7.

Things get different if we decrease both T and T, with
constant n = T/T,. Since 8§ F(T,, nT,) = F, — F, has to
be an increasing function of T, we get dLT‘_B_’]: = (97, +
ndr)6F >0, and then (9) shows that § U < 0, confirming
the equilibrium result for 7, = T [1].

Thus for T; # T the anomalous latent heat is not for-
bidden, provided the transition is not driven by a propor-
tional change of both temperatures. Here is a model
demonstrating this effect. Particles are located at the nodes
of a lattice embedded into a particle reservoir with chemi-
cal potential 4 = —a < 0. Each particle carries an Ising
spin. At short distances the particles repel each other so
that not more than one particle can occupy a single node.
The Ising spins interact ferromagnetically. This interaction
is active between two nodes only if they both are occupied;
s={s; = *1}¥  and f = {f; = 0, 1}}\., are, respectively,
the spins and the occupations of N nodes. We assume all
nodes can interact with each other (mean field). The
Hamiltonian reads

J N
H(s, f) = TN Zfifksisk + aZfi’ (10)
Fi 7

where J/(2N) > 0 is the ferromagnetic coupling constant
with J = O(1), as required for the extensivity.

We make two assumptions. (1) s and f couple, respec-
tively, to a spin bath and lattice bath at different tempera-
tures, T, = i and T = % (2) s (f) is slow (fast), i.e., the
relaxation time 7, of f is much shorter than the relaxation

time 7, of 5. These times are driven by the interactions with
thermal baths, since H contains only commuting terms;
note that in the quantum setting s; = s, and f; = %(1 +
o;.), where s; , and o, , are the third Pauli matrices.

The above assumptions are motivated by NMR or ESR
physics, where for nuclear or electronic spins the spin bath
is realized by relatively weak dipole interactions and does,
indeed, lead to a temperature different from the lattice one
[11]. This spin temperature can be tuned by external fields
or by spin cooling and plays an important role in analyzing
experiments [11]. The relaxation time 7, on which the spin
temperature is established is known as 7, time in NMR or
ESR, and usually varies between 10™* s and 1 s depending
on the material. The spin and the lattice temperatures tend
to equalize on the 7, time, which for many magnetic
materials amounts to minutes or hours [11]. Estimating
the relaxation time 7, of f via the rotation-vibration
mechanism as 10~'2-107? s [11], we see that our assump-
tions are based on 7, K 7, KL 7.

The model is a suitable candidate for displaying the
anomalous latent heat, since the two terms in the right-
hand side (RHS) of (10) are in conflict: for two lined up
spins, s;5; > 0, the term —y>"(; 4 fif5:5) tends to increase
occupations, f;f; >0, while &) ;f; makes this increase
costly. The equilibrium (7, = T) version of the model is
related to the Blume-Capel model [2]. Similar models were
employed for describing solid mixtures [2], reentrance
phenomena [12], and glassy physics [13].

e(zif[si)z =c fdme_(N/z)Bjmz+BJmZi5ifi,

where ¢ = ,/M we express from Egs. (2) and (10), the

27’
partition function Z of the model as

7 = Trs[Trfe(BJ/zN)(Zif"si)zfaﬁz,-ff]” — f@meﬁvﬁx:}?’

Employing

r
T

is an integer (replica method); later on we shall make
continuation to real n. We also defined ¢(m)=
1+ e ®BTB/m and

B, F(m) = % i mi - 1n|: Z ezz_lln(ﬁ(kmt,)} (11)
a=1

k==*1

where Dm = ¢2[[2_, [dm,, and we assumed that n =

Z is calculated by the saddle-point method, where one
searches the deepest minimum of F as a function of m,,.
This minimum is reached for m, = m (replica symmetry),
where m satisfies ﬁfﬂma:m =0, ie.,

—ap ¢n*1(m)e,81m _ d)n*l(_m)efﬁ.lm
¢"(m) + ¢"(—m)

The corresponding value of F obtained from (11) is

12)

nm=e

Jm?

F==5-T In[¢"(m) + ¢"(—m)]. (13)

It is seen that F is the free energy of the system and that m
is the magnetization:
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Because of the symmetry of the model, Eq. (12) admits two
equivalent solutions with =m. The choice between them is
done spontaneously.

The energy ‘U and the entropies of the spins S and the
occupations S are calculated from Egs. (3)—(10)

sz —a n— m
U = St Z(m Bk2+|¢ Ykm)eB/km — (15)
Sy = Inz(m) — o > ¢"(km) Ing(km), (16)
k==*1
BJ m2
S =pU +— > ¢"(km)Ing (km) — , (7

k*l

where z(m) = Y ;_.,¢"(km). The two terms in the RHS
of (15) are equal, respectively, to the spin-spin interaction
energy 5 (3 fis:)?) and a N, where N = ¥ (f;) is the
average number of particles.

In the derivation of (15)—(17) we assumed that the
system is in the ferromagnetic phase: m # 0. For the
paramagnetic phase m = 0 one has from (13)

o

= 460('8 I SS = In2,
= ap —ap
S 29 1 1 +1In(l + e ).

The phase diagram of the model is constructed in terms of
three independent adimensional parameters:

a=all, 60,=T,)J, 6=T/J. (18)

Let us start with few particular cases. For § — 0 we get
from (13) (assuming m = 0)

2

m
BF =1,

—In[1+ ¢(m—a)+ {(a—m)e /%] (19)

s

m= (1 + @071 - {(a — m)], (20)

where {(x) is approximated by the step function: {(x) =
1(0) for x >0 (x < 0). We see that m # 0 only for a < 1.
However, only for a <0.5, Eq. (20) predicts first-order

phase transition to the ferromagnet at 6, = ch). Above

0\ there are no particles in the system, N = 0, since
the energy cost for consuming a particle from the particle
reservoir is too high (due to T — 0). At 8, = 6 a finite
fraction of particles is consumed from the particle reservoir
making up the ferromagnetic phase, which appears as a
metastable state at a higher critical temperature 67 > 6\,
There is no first-order transition for a > 0.5, though for
1>a>0.5 the ferromagnet can exist as a metastable
phase.

In a different limit @ = 0 we get from (13)

m m
— 01 h(— 21
263‘) 61In cos (20>, 21D

m
= — )+
2m tanh( > 0) tanh( 20 ) (22)

Now there are only second-order phase transitions for the
same reason as for the usual (Curie-Weiss) mean-field
ferromagnet: 93, F can never turn to zero for m # 0. The
phase diagram on the 6,-6 plane amounts to the ferromag-
net (paramagnet) located below (above) the line,

o' +0,! =4 (23)

£=m——0 In cosh(
J 2

The same Egs. (21) and (22) without the terms containing 6
apply for  — oo. Here f; fluctuate so strongly that the
influence of « disappears.

A necessary condition for second-order transition is the
local instability of the paramagnet: 92, F|,.—o = 0, i.e.,

Hl-t (24)

We could continue this reasoning and develop the
Ginzburg-Landau expansion, but here it is easier to study
(12) and (13) directly. For a > 0.5 there is only the second-
order phase transition to ferromagnet at temperatures given
by (24). Equation (14) shows that m can increase by lining
up the spins with or without increasing the occupations.
For a > 0.5 the second way works, since it is too costly to
absorb particles from the reservoir. Indeed, slightly below
the transition the difference in the average number of
particles is small: AN o« m? < m; see (15).

For 0.38 <a < (.5 the phase diagram is of the type
presented in Fig. 1. Now there are first-order phase tran-
sitions from the paramagnet to the ferromagnet. Recall
Egs. (19) and (20) for understanding their mechanism.
The transition (phase coexistence) line is found by solving
(14), looking for the deepest minima of F(m), and requir-

0, =[1+e’Q2+ V0 — 0~

0.15
Ts/J
0.05
0.1 0.3 0.5 0.7
T
FIG. 1. The phase diagram on the T — T plane; 7 = 0.45. P

and F refer to the paramagnet and ferromagnet, respectively.
Bold line: first-order phase transitions. Normal line: second-
order phase transitions. For 7' — oo this line monotonically
saturates at T, = 0.25 J, as seen from (23). Dashed line: the
instability line of the paramagnet. On the AC segment the latent
heat is anomalous.
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ing the continuous change of the free energy: F(m) =
F(0). The ferromagnet corresponds to F(m) < F(0) (re-
call the saddle-point method). Other quantities of interest
change by jump. The ferromagnet first appears as a meta-
stable phase above the first-order transition line, while the
paramagnet survives as metastable till the dashed line in
Fig. 1. Thus, in the vicinity of the first-order transition line,
both phases are locally stable. This bistability implies
hysteresis and memory: when changing the temperature
the final state of the system (paramagnet or ferromagnet)
depends on its initial state. Since both m and JN increase in
the ferromagnet, m jumps to a nonzero value not simply
due to lining up the existing spins, but also due to absorp-
tion of additional particles from the reservoir.

On the AC segment the system moves from the para-
magnet to the ferromagnet upon increasing T or decreasing
T,. Thus, S, is smaller in the ferromagnet, while S is larger
there: 6S; <0 and 85 > 0; see (9). This is necessary for
the existence of the anomalous latent heat effect; see (9)
and below. On the AB segment the latent heat is anoma-
lous: when decreasing T for a fixed T the system moves
towards the ferromagnet, and its internal energy increases.
This is due to a positive energy brought about by the
particles coming from the reservoir; see (15). The maximal
magnitude of the effect reached in the middle of the AC
segment is U ~ J/20. Recall that the transition to the
ferromagnet is induced by the tendency of the spin inter-
action energy to decrease. The latent heat U is a con-
sequence of this tendency that for 6 U > 0 overcomes
its cause. On the whole first-order transition line the
total entropy jump is negative: 6S,, = 0S5 + S, <O.
Expectedly the ferromagnet is more ordered than the
paramagnet.

At the point B the latent heat is zero, while the BC
segment shows an anomalous latent heat in a different
scenario: upon decreasing T the system goes to the para-
magnet, where the energy is higher. The main difference
between the two scenarios is that now the low-7 phase
(paramagnet) has higher total entropy S,,: a first-order
transition to a higher entropy phase is induced by decreas-
ing the temperature 7'. This is impossible in equilibrium.

An example of the phase diagram for a < 0.38 is pre-
sented in Fig. 2. The qualitative shape of the ferromagnet-
paramagnet boundary is given by (23). The transitions to
the ferromagnet are always induced when decreasing either
temperature: there is no anomalous latent heat here. During
the first-order transitions the particle number still in-
creases: 6N >0, but now this brings to decreasing en-
tropy 05 < 0. In the present low-a regime the occupations
are slaved by the spins so that the incoming particles
arrange their entropy in the way dictated by the spin-spin
interaction energy. For ¢ — 0, the first-order transitions
gradually disappear.

In conclusion, we found first-order phase transitions
with an unexpected sign of the latent heat: it is positive
when going from high temperature (high entropy) phase to

0.8
T./J 0.6 F P
0.4 %

0.2 /

/
0.1 0.25 0.4
T/

0.55

FIG. 2. The same as in Fig. 1, but now a = 0.245 J.

the low temperature (low entropy) one. Two conditions are
necessary for this: global nonequilibrium (two different
temperatures), though the local equilibrium is kept and
leads to a slightly generalized thermodynamics, and con-
flicting interactions. The effect was displayed on the model
of lattice gas whose particles carry ferromagnetically in-
teracting Ising spins. In this model the spins equilibrate at a
temperature different from the lattice one, and there is a
conflict between the spin-spin interaction and the chemical
potential.

The effect seems to be generic, since we found it in
many other situations, e.g., in the present model, but with
fast spins and slow occupations, models with multispin
interaction, the Ising spin-link ferromagnet, etc.
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